
CONTENTS

NUCLEAR ENERGY MATERIALS AND REACTORS

Nuclear Energy Materials and Reactors -Volume 1 No. of Pages: 432 ISBN: 978-1-84826-311-6 (eBook) ISBN: 978-1-84826-761-9 (Print Volume)

Nuclear Energy Materials and Reactors -Volume 2 No. of Pages: 384 ISBN: 978-1-84826-312-3 (eBook) ISBN: 978-1-84826-762-6 (Print Volume)

For more information of e-book and Print Volume(s) order, please **click here**

Or contact : eolssunesco@gmail.com

CONTENTS

VOLUME I

Fundamentals of Nuclear Energy

R.A. Chaplin, Department of Chemical Engineering, University of New Brunswick, Canada

1

1. Historical Review

1.1 Historical Discoveries 1.2 The Atom 1.2.1 Electron 1.2.2 Proton 1.2.3 Neutron 1.2.4 Atom 1.3 Radiation

- - 1.3.1 X-rays
 - 1.3.2 Radioactivity
 - 1.3.3 β -Particles
 - 1.3.4 α -Particles
 - 1.3.5 y-Radiation
- 1.4 Nuclear Fission
- 1.5 Nuclear Energy
- 1.6 Nuclear Reactors
 - 1.6.1 Research Reactors
 - 1.6.2 Production Reactors
 - 1.6.3 Power Reactors
- 2. Scientific Recognition
 - 2.1 Key Researchers
 - 2.2 Significant Achievements
 - 2.2.1 Niels Bohr
 - 2.2.2 James Chadwick
 - 2.2.3 Enrico Fermi
 - 2.3 Nobel Prizes
- 3. Nuclear Reactor Development
 - 3.1 New Technology
 - 3.2 First Chain Reaction
 - 3.3 Atomic Bombs
 - 3.4 Power Producing Reactors
- 4. Nuclear Reactor Accidents
 - 4.1 Lessons from Accidents
 - 4.2 The Oklo Phenomenon
 - 4.3 Three Mile Island Accident
 - 4.4 Chernobyl Accident
- 5. Basic Nuclear Physics
 - 5.1 Atomic Components
 - 5.2 Atomic Mass and Energy
 - 5.3 Atomic Structure
 - 5.4 Radioactive Processes
 - 5.5 Binding Energy
- 6. Neutron Characteristics
 - 6.1 Neutron Production
 - 6.2 Neutron Flux and Energy
 - 6.3 Nuclear Cross Sections
 - 6.4 Reaction Rate
 - 6.5 Cross Section Variation
 - 6.6 Energy Release

- 6.7 Fission Characteristics
- 6.8 Delayed Neutrons
- 6.9 Fission Process Summary
- 7. Basic Reactor Theory
 - 7.1 Basic Concepts
 - 7.2 Fission Chain Reaction
 - 7.3 Basic Reactor Core Design
 - 7.4 Neutron Multiplication Factor
 - 7.5 Reactor Size and Shape
 - 7.6 Neutron Flux Variation
 - 7.7 Reactor Power
- 8. Nuclear Reactor Operation
 - 8.1 Neutron Lifetime
 - 8.2 Source Multiplication
 - 8.3 Approach to Critical
 - 8.4 Effect on Reactor Operation
 - 8.5 Fuel Burnup

R.A. Chaplin, Department of Chemical Engineering, University of New Brunswick, Canada

- 1. Fundamental Concepts
 - 1.1. Atomic Components
 - 1.2. Atomic Notation
 - 1.3. Atomic Mass Scale
 - 1.4. Mass-Energy Equivalence
 - 1.5. Avogadro's Number
- 2. Atomic Structure
 - 2.1. Atomic Dimensions
 - 2.2. Energy Levels
 - 2.3. Nuclear Structure
- 3. Radioactivity
 - 3.1. Radioactive Processes
 - 3.1.1. Alpha Decay
 - 3.1.2. Negative Beta Decay
 - 3.1.3. Positive Beta Decay
 - 3.1.4. Electron Capture
 - 3.1.5. Proton Emission
 - 3.1.6. Neutron Emission
 - 3.1.7. Neutron Decay
 - 3.2. Radioactive Decay
 - 3.3. Radioactive Chain
 - 3.4. Radioactive Build-up (Neutron Activation)
 - 3.5. Build-up and Decay
- 4. Binding Energy
 - 4.1. Definition of Binding Energy
 - 4.2. Plot of Binding Energy

Nuclear Interactions

R.A. Chaplin, University of New Brunswick, Canada

- 1. Neutron Interactions
 - 1.1. Neutron Production
 - 1.2. Elastic Scattering (Elastic Collision)
 - 1.3. Inelastic Scattering (Inelastic Collision)
 - 1.4. Radiative Capture

75

- 1.5. Nuclear Transmutation (Charged Particle Reaction)
- 1.6. Neutron Producing Reaction
- 1.7. Fission
- 1.8. Neutron Flux
- 1.9. Neutron Energy
- 2. Nuclear Cross Sections
 - 2.1. Microscopic Cross Sections
 - 2.2. Macroscopic Cross Sections
 - 2.3. Number of Nuclei
 - 2.4. Reaction Rate
 - 2.5. Summary
 - 2.5.1. Macroscopic cross-section
 - 2.5.2. Neutron Flux
 - 2.5.3. Reaction Rate
- 3. Neutron Scattering and Capture
 - 3.1. Neutron Attenuation
 - 3.2. Mean Free Path
 - 3.3. Scattering Characteristics
 - 3.4. Absorption Characteristics
 - 3.5. Radiative Capture Model
 - 3.6. Cross Sections
- 4. Neutron Moderation
 - 4.1. Neutron Energy Changes
 - 4.2. Logarithmic Mean Energy Decrement
 - 4.3. Definitions
 - 4.3.1. Mean Logarithmic Energy Decrement ξ
 - 4.3.2. Macroscopic Scattering Cross Section Σ_s
 - 4.3.3. Slowing Down Power
 - 4.3.4. Moderating Ratio
- 5. Fission and Fusion
 - 5.1. Energy Release
 - 5.2. Fission
 - 5.3. Fission Characteristics
 - 5.4. Fission Products
 - 5.5. Neutron Energy Spectrum
 - 5.6. Delayed Neutrons
 - 5.7. Fission Process Summary
 - 5.8. Charged Particles

Nuclear Reactor Theory

R.A. Chaplin, Department of Chemical Engineering, University of New Brunswick, Canada

- 1. Neutron Diffusion Characteristics
 - 1.1. Basic Concepts
 - 1.2. Fick's Law
- 2. Neutron Diffusion Equation
 - 2.1. Neutron Balance
 - 2.2. Boundary Conditions
 - 2.3. Neutron Flux Variation
 - 2.4. Infinite Planar Source
 - 2.5. Point Source
 - 2.6. Diffusion Length
- 3. One Group Reactor Equation
 - 3.1. Development of Diffusion Equation
 - 3.2. One Group Critical Equation
- 4. Reactor Equation Applications
 - 4.1. Basic Application of Equation

- 4.2. Infinite Slab Reactor
- 4.3. Reactor Equation Solutions
 - 4.3.1. Rectangular Reactor
 - 4.3.2. Cylindrical Reactor
 - 4.3.3. Spherical Reactor
- Neutron Flux and Power

5.

- 5.1. Neutron Flux Variation
- 5.2. Spherical Reactor
- 5.3. Maximum to Average Flux
 - 5.3.1. Rectangular Reactor
 - 5.3.2. Cylindrical Reactor
 - 5.3.3. Spherical Reactor

Nuclear Reactor Design

R.A. Chaplin, Department of Chemical Engineering, University of New Brunswick, Canada

129

- 1. Basic Principles
 - 1.1. Fission Chain Reaction
 - 1.2. Neutron Absorption Characteristics
 - 1.3. Heat Removal
 - 1.4. Basic Reactor Core Design
- 2. Basic Theory
 - 2.1. Neutron Diffusion Equation
 - 2.2. One Group Reactor Equation
 - 2.3. Reactor Design Considerations
- 3. Neutron Energy Production
 - 3.1. Group Diffusion Method
 - 3.2. Two Group Calculations
- 4. Fast Fission and Resonance Absorption
 - 4.1. Neutron Multiplication Factor
 - 4.2. The Four Factor Formula
 - 4.3. The Six Factor Formula
 - 4.4. Neutron Cycle
- 5. Neutron Leakage
 - 5.1. Reactor Shapes
 - 5.2. Surface Effects
 - 5.3. Reactor Reflectors
 - 5.4. Neutron Flux
- 6. Output Enhancement
 - 6.1. Reactor Power
 - 6.2. Flux Flattening
 - 6.3. Flux Flattening in PWRs
 - 6.3.1. Reflector
 - 6.3.2. Fuel Loading and Management
 - 6.4. Flux Flattening in CANDU reactors
 - 6.4.1. Reflector
 - 6.4.2. Adjuster Rods
 - 6.4.3. Bi-directional Fuelling
 - 6.4.4. Differential Fuel Burnup
- 7. Reactor Configuration
 - 7.1. Homogeneous and Heterogeneous Arrangements
 - 7.2. Effect of Fuel Rods
 - 7.3. Effect of Control Rods
 - 7.4. Chemical Shim

Nuclear Reactor Kinetics

R.A. Chaplin, Department of Chemical Engineering, University of New Brunswick, Canada

- 1. Reactor Kinetics
 - 1.1. Introduction
 - 1.2. Neutron Lifetime
 - 1.3. Reactor Power
 - 1.4. Basic Reactor Kinetics
 - 1.5. Reactor Period
 - 1.6. Doubling Time
 - 1.7. Reactor Kinetics with Delayed Neutrons
 - 1.8. Reactor Kinetics Numerical Model
 - 1.9. Negative Reactivity
- 2. Reactor Operation
 - 2.1. Shutdown Conditions
 - 2.1.1. Spontaneous Fission
 - 2.1.2. Decay of Delayed Neutron Precursors
 - 2.1.3. Photo-neutron Emission
 - 2.2. Source Multiplication
 - 2.3. Rate Log Power
 - 2.4. Power Transients
 - 2.5. Decay Heat
- 3. Critical Conditions
 - 3.1. General Considerations
 - 3.2. First Chain Reaction
 - 3.3. Atomic Bombs
 - 3.4. Power Producing Reactors
 - 3.5. Approach to Critical
- 4. Nuclear Reactor Startup
 - 4.1. Reactivity Changes and Power Measurement
 - 4.2. Approach to Criticality

Reactivity Changes

R.A. Chaplin, Department of Chemical Engineering, University of New Brunswick, Canada

- 1. Introduction
 - 1.1. Effect on Reactor Operation
- 2. Fission Product Effects
 - 2.1. Magnitude of Effects
 - 2.2. Xenon Transients
 - 2.3. Xenon Reactivity Transients
 - 2.4. Xenon Oscillations
 - 2.5. Samarium Build-Up
- 3. Fuel Effects
 - 3.1. Fuel Burnup
- 4. Temperature Effects
 - 4.1. Coefficients of Reactivity
 - 4.2. Doppler Broadening
 - 4.3. Neutron Spectrum Hardening
 - 4.4. Density Change
 - 4.5. Void Formation
 - 4.6. Reactivity Changes
 - 4.7. Power Coefficient

Nuclear Power Plants

R. A. Chaplin, Department of Chemical Engineering, University of New Brunswick, Canada

- 1. Introduction
 - 1.1. General Structure

205

- 1.2. Demonstration and Prototype Reactors
- 2. Reactor Types
 - 2.1. Reactor Development
 - 2.2. Commercial Reactors in Service
 - 2.3. Representative Reactors
- 3. Design Considerations
 - 3.1. Reactor Size
 - 3.2. Reactor Core Design
 - 3.3. Turbine Generator Design
 - 3.4. Operational Constraints
 - 3.5. Grid System Requirements
 - 3.6. Construction Duration
- 4. Thermodynamic Cycle
 - 4.1. Carnot Cycle
 - 4.2. Rankine Cycle
 - 4.3. Brayton Cycle
 - 4.4. General Principles
- 5. Nuclear Principles
 - 5.1. Fission Energy
 - 5.2. Nuclear Reactor Principles
 - 5.3. Fuel Burnup
- 6. Safety and Licensing
 - 6.1. Radiation Hazards
 - 6.2. Risk Assessment
 - 6.3. Licensing Principles
- 7. Nuclear Fuel
 - 7.1. Fuel Characteristics
 - 7.2. Nuclear Waste
 - 7.3. Fuel Utilization
- 8. Environmental Aspects
 - 8.1. Uranium Mining
 - 8.2. Nuclear Plant Effluents
 - 8.3. Thermal Discharge
 - 8.4. Carbon Dioxide Emissions
 - 8.5. Nuclear Fuel
- 9. New Developments
 - 9.1. General Direction
 - 9.2. Current New Developments
 - 9.2.1. European Pressurized Water Reactor (EPR)
 - 9.2.2. Advanced Passive Pressurized Water Reactors (AP 600 and AP 1000)
 - 9.2.3. System 80+ Pressurized Water Reactor
 - 9.2.4. Advanced Pressurized Water Reactor (APWR)
 - 9.2.5. Advanced Boiling Water Reactor (ABWR)
 - 9.2.6. The Economic Simplified Boiling Water Reactor (ESBWR)
 - 9.2.7. The Advanced CANDU Reactor (ACR)
 - 9.2.8. The mPower Reactor
 - 9.3. Long Term New Developments
 - 9.3.1. The Iris Reactor
 - 9.3.2. The NuScale Reactor
 - 9.3.3. The Pebble Bed Modular Reactor PBMR
 - 9.3.4. The Gas Turbine Modular Helium Reactor (GT-MHR)
 - 9.3.5. The Antares High Temperature Reactor (HTR)
 - 9.4. New Small Portable Reactors
 - 9.4.1. The Hyperion Power Module
 - 9.4.2. The Super-Safe Small and Simple (4S) Reactor
- 10. Nuclear Fusion
 - 10.1. Fusion Energy
 - 10.2. Theoretical Aspects

- 10.3. Reactor Structure
- 10.4. The International Thermonuclear Experimental Reactor (ITER)

Pressurized Water Reactors

J. Pongpuak, Department of Chemical Engineering, University of New Brunswick, Canada

- 1. Introduction
 - 1.1. General Information
- 2. General Configuration
 - 2.1. Western Pressurized Water Reactor PWR
 - 2.2. Soviet Pressurized Water Reactor VVER
 - 2.3. Major Differences between Soviet VVERs and Western PWRs
- 3. Core Arrangement
 - 3.1. Reactor Vessel
 - 3.2. Moderator and Coolant
 - 3.3. Reactor Fuel Arrangement
 - 3.4. Control Rod Arrangement
 - 3.5. General Technical Data
- 4. Fuel Characteristics and Management
 - 4.1. Fuel Characteristics
 - 4.2. Fuel Management
 - 4.3. Refueling
 - 4.4. Long-Term Reactivity Control
 - 4.4.1. Control Rod Motion
 - 4.4.2. Soluble poisons
 - 4.4.3. Burnable poisons
 - 4.5. Chemical Shim
 - 4.6. Fuel Technical Data
- 5. Heat Transport
 - 5.1. The Reactor Coolant System
 - 5.2. Steam Generator
 - 5.3. Reactor Coolant Pump
 - 5.4. Pressurizer
- 6. Steam Cycle
 - 6.1. Secondary System
 - 6.2. Steam Generator
 - 6.2.1. Horizontal Steam Generators
 - 6.2.2. The U-tube Steam Generator (UTSG)
 - 6.2.3. The Once-Through Steam Generator (OTSG)
 - 6.3. The Saturated Steam Turbine Cycle
- 7. Operational and Safety Aspects
 - 7.1. Plant Control
 - 7.2. The VVER: Three Generations of Light Water Reactors, Upgraded Over Time
 - 7.2.1. First Generation VVERs
 - 7.2.2. Second-Generation VVERs
 - 7.2.3. Third-Generation VVERs
 - 7.2.4. VVER-1000 Derivatives

Boiling Water Reactors

R.A. Chaplin, Department of Chemical Engineering, University of New Brunswick, Canada

281

- 1. Introduction
 - 1.1. General Information
 - 1.2. General Arrangement
- 2. General Configuration
 - 2.1. Reactor Arrangement

- 2.2. Recirculation Pumps and Jet Pumps
- 2.3. Technical Data
- 3. Core Arrangement
 - 3.1. Reactor Vessel
 - 3.2. Moderator and Coolant and Fuel
 - 3.3. Reactor Fuel Arrangement
 - 3.4. Control Rod Configuration
- 4. Fuel Characteristics and Management
 - 4.1. Fuel Characteristics
 - 4.2. Refueling
 - 4.3. Fuel Technical Data
- 5. Heat Transport
 - 5.1. Dual Cycle Steam Generation
 - 5.2. Single Cycle Steam Generation
- 6. Steam Cycle
 - 6.1. Steam Generation
 - 6.2. Saturated Steam Turbine Cycle
 - 6.3. Steam Activation
 - 6.4. Radioactive Fission Products
- 7. Operational and Safety Aspects
 - 7.1. Reactor Control
 - 7.2. Emergency Core Cooling
 - 7.3. Evolutionary BWR Designs

Pressurised Heavy Water Reactors

R.A. Chaplin, Department of Chemical Engineering, University of New Brunswick, Canada

- 1. Introduction
- 2. General Configuration
 - 2.1. Plant Arrangement
 - 2.2. Coolant Circuit
- 3. Core Arrangement
 - 3.1. Fuel Channels
 - 3.2. Control Devices
 - 3.2.1. Liquid Zone Control Absorbers
 - 3.2.2. Mechanical Rod Control Absorbers
 - 3.2.3. Mechanical Rod Adjusters
 - 3.2.4. Mechanical Rod Shutoff Absorbers
 - 3.2.5. Liquid Poison Injection System
- 4. Fuel Characteristics and Management
 - 4.1. Fuel Bundles
 - 4.2. Refueling
 - 4.3. Fuel Management
- 5. Heat Transport
 - 5.1. Primary Circuit
 - 5.2. Fuel Channel Conditions
 - 5.3. Steam Generator Conditions
 - 5.4. Thermosyphoning
- 6. Steam Cycle
 - 6.1. Heat Balance
 - 6.2. Steam System
 - 6.3. Steam Bypass System
- 7. Operational and Safety Aspects
 - 7.1. Plant Control
 - 7.2. Power Density
- 8. Safeguard and Future Prospects
 - 8.1. Engineered Safeguards

- 8.2. Emergency Protective Systems
- 8.3. Building Safety Systems
- 8.4. Types of Accidents
- 8.5. Future Prospects
- 8.6. The Advanced CANDU Reactor

Heavy Water Light Water Reactors

R.A. Chaplin, Department of Chemical Engineering, University of New Brunswick, Canada

- 1. Introduction
 - 1.1. General
 - 1.2. Global Description
 - 1.2.1. The Winfrith SGHWR Reactor
 - 1.2.2. The Gentilly CANDU-BLW Reactor
 - 1.2.3. The Fugen ATR Reactor
- 2. General Configuration
 - 2.1. General Arrangement
 - 2.2. Moderator and Coolant
 - 2.2.1. The Moderator
 - 2.2.2. The Coolant
 - 2.3. The Fuel
 - 2.3.1. The Winfrith SGHWR Reactor
 - 2.3.2. The Gentilly CANDU-BLW Reactor
 - 2.3.3. The Fugen ATR Reactor
- 3. Core Arrangement
 - 3.1. Reactor Vessel
 - 3.1.1. The Winfrith SGHWR Reactor
 - 3.1.2. The Gentilly CANDU-BLW Reactor
 - 3.1.3. The Fugen-ATR Reactor
 - 3.2. Steam Drum
 - 3.3. Overall Performance Parameters
- 4. Fuel Characteristics and Management
 - 4.1. Long-term Reactivity Control
 - 4.2. Chemical Shim
 - 4.3. Fuel Configuration and Cladding
 - 4.3.1. The Winfrith SGHWR Reactor
 - 4.3.2. The Gentilly CANDU-BLW Reactor
 - 4.3.3. The Fugen ATR Reactor
 - 4.4. Refueling Management
 - 4.4.1. The Winfrith SGHWR Reactor
 - 4.4.2. The Gentilly CANDU-BLW Reactor
 - 4.4.3. The Fugen ATR Reactor
 - 4.5. Fuel Technical Data
 - 4.5.1. The Winfrith SGHWR Reactor
 - 4.5.2. The Gentilly CANDU-BLW Reactor
 - 4.5.3. The Fugen ATR Reactor
- 5. Heat Transport
 - 5.1. Thermal Hydraulics and Steam Production
 - 5.2. Coolant Circuit and Coolant Flow
 - 5.2.1. The Winfrith SGHWR Reactor
 - 5.2.2. The Gentilly CANDU-BLW Reactor
 - 5.2.3. The Fugen ATR Reactor
- 6. Steam Cycle
 - 6.1. Steam Drums and Steam Flow
 - 6.1.1. The Winfrith SGHWR Reactor
 - 6.1.2. The Gentilly CANDU-BLW Reactor
 - 6.1.3. The Fugen ATR Reactor

ix

- 7. Operational and Safety Aspects
 - 7.1. Reactivity Effects
 - 7.2. Short-term Reactivity Control
 - 7.2.1. The Winfrith SGHWR Reactor
 - 7.2.2. The Gentilly CANDU-BLW Reactor
 - 7.2.3. The Fugen ATR Reactor
 - 7.3. Control System Design and Operation
 - 7.3.1. The Winfrith SGHWR Reactor
 - 7.3.2. The Gentilly CANDU-BLW Reactor
 - 7.3.3. The Fugen ATR Reactor
- 8. Engineered Safeguards
 - 8.1. Radiation Survey
 - 8.1.1. The Winfrith SGHWR Reactor
 - 8.1.2. The Gentilly CANDU-BLW Reactor
 - 8.2. Accident Mitigation
 - 8.2.1. The Winfrith SGHWR Reactor
 - 8.2.2. The Fugen ATR Reactor
 - 8.3. Passive Safety Features
 - 8.3.1. The Fugen ATR Reactor
- 9. Conclusion

Index

About EOLSS

VOLUME II

Advanced Gas Cooled Reactors Tim McKeen, ADI Limited, Fredericton, Canada

- 1. Introduction
 - 1.1. Magnox Reactors
 - 1.2. Design Evolution
 - 1.3. Advanced Gas Cooled Reactors
- 2. General Configuration
 - 2.1. General Reactor Arrangement
 - 2.2. Reactor Core
 - 2.3. Reactor Vessel and Steam Generator
- 3. Core Arrangement
 - 3.1. Core Cooling Requirements
 - 3.2. Graphite Block Core
 - 3.3. Core Components
- 4. Fuel Characteristics and Management
 - 4.1. Fuel Configuration and Cladding
 - 4.2. Refueling Management
 - 4.3. Long Term Reactivity Control
- 5. Heat Transport
 - 5.1. Power Density and Heat Balance
 - 5.2. Coolant Circuit and Coolant Flow
- 6. Steam Cycle
 - 6.1. Steam Generators and Steam Flow
- 7. Operational and Safety Aspects
 - 7.1. Short Term Reactivity Control
 - 7.1.1. Control Rod Configuration
 - 7.1.2. Secondary Control System

х

367

371

7.1.3. Tertiary Control System

- 7.2. Control System Design and Operation
- 8. Safeguards and Future Prospects
 - 8.1. Engineered Safeguards
 - 8.2. Operational Safety
 - 8.3. Accident Mitigation
 - 8.4. Passive Safety Features
 - 8.5. New Developments

Light Water Graphite Reactors

R.A. Chaplin, Department of Chemical Engineering, University of New Brunswick, Canada

- 1. Introduction
- 2. General Configuration
- 3. Core Arrangement
 - 3.1. Core Structure
 - 3.2. Fuel
 - 3.3. Coolant
 - 3.4. Reactor Vessel
- 4. Fuel Characteristics and Management
 - 4.1. Fuel Pellets
 - 4.2. Fuel Cladding and Configuration
 - 4.3. Long Term Reactivity Control
 - 4.4. Refueling Equipment and Capability
- 5. Heat Transport
 - 5.1. Power Density and Heat Flux
 - 5.2. Coolant Circuit and Coolant Flow
- 6. Steam Cycle
- 7. Operational and Safety Aspects
 - 7.1. Short Term Reactivity Control
 - 7.2. Reactivity Characteristics
- 8. Engineered Safeguards and Safety Aspects
 - 8.1. Engineered Safeguards
 - 8.2. Operational Safety
 - 8.3. Comparison with other Reactors
 - 8.4. The Chernobyl Accident

High Temperature Gas Cooled Reactors

R.A. Chaplin, Department of Chemical Engineering, University of New Brunswick, Canada

50

- 1. Introduction
 - 1.1. Thermodynamic Cycle
 - 1.2. High Temperature Requirements
 - 1.3. Historical Background
 - 1.4. The Dragon Reactor
 - 1.5. The Peach Bottom Reactor
 - 1.6. Fort Saint Vrain Reactor
 - 1.7. The Large HTGR
- 2. General Configuration
 - 2.1. Design Concept
 - 2.2. Plant Layout
- 3. Core Arrangement
 - 3.1. Reactor Core
 - 3.2. Prestressed Concrete Reactor Vessel
- 4. Fuel Characteristics and Management
 - 4.1. Fuel Particles

- 4.2. Fuel Elements
- 4.3. Fuel Management
- 5. Heat Transport
 - 5.1. Fluid Properties
 - 5.2. Primary Heat Transport System
 - 5.3. Auxiliary Heat Removal System
- 6. Steam Cycle
 - 6.1. Cycle Arrangement
 - 6.2. Auxiliary Turbine Driven Components
- 7. Operational and Safety Aspects
 - 7.1. Shutdown Systems
 - 7.2. Thermal Stability
 - 7.3. Pressure Vessel Failure
 - 7.4. Thermal Efficiency
 - 7.5. Performance of Fort St. Vrain
 - 7.6. Decommissioning of Fort St Vrain
- 8. Future Prospects
 - 8.1. General Overview
 - 8.2. Demonstration Pebble Bed Reactor
 - 8.3. Prototype Pebble Bed Reactor
 - 8.4. Direct Cycle Gas Turbine
 - 8.5. Modular High Temperature Reactor
 - 8.6. The Pebble Bed Modular Reactor

Pebble Bed Modular Reactor

A. Koster, PBMR, South Africa

- 1. General Description
 - 1.1. Passive Heat Removal
 - 1.2. The Fuel
 - 1.3. On-line Fueling
 - 1.4. The Direct Cycle
- 2. Technical Description
 - 2.1. Principles of the Direct Cycle
 - 2.1.1. Brayton Cycle Description
 - 2.2. RPV and Core Internals
 - 2.2.1. Reactor Core
 - 2.2.2. Core Internals and RPV
 - 2.2.3. Control Systems
 - 2.3. Power Conversion Unit
 - 2.3.1. System Overview
 - 2.3.2. Brayton Cycle Components
 - 2.3.3. Main Power System Heat Exchangers
 - 2.4. Power Control
 - 2.4.1. Load Following
 - 2.4.2. Inventory Control System
- 3. Fuel Handling and Storage System
 - 3.1. Overview
 - 3.2. Components and Function
 - 3.3. Sphere Storage
 - 3.4. Sphere Circulation
- 4. Plant Layout and Equipment Arrangements
 - 4.1. Plant Layout
 - 4.2. Water Cooling Systems
 - 4.3. Reactor Cavity Cooling System
 - 4.4. Pressure Relief System 4.4.1. Overview

- 4.4.2. Functions
- 4.4.3. Layout
- 4.4.4. Operation
- 4.5. Reactor Control
- 5. Safety Design Specification
 - 5.1. Fuel
 - 5.2. Heat Production
 - 5.3. Heat Removal
 - 5.3.1. Core Structures Design
 - 5.3.2. Reactor Cavity Cooling System
 - 5.4. Protection against Chemical Attack
 - 5.5. Containment of Radioactive Materials
 - 5.5.1. Conservative Design
 - 5.5.2. Personnel Protection
 - 5.6. Safety Analysis
- 6. Discussion

Radioactive Wastes, Origins, Classification and Management John K. Sutherland, *Fredericton, New Brunswick, Canada*

111

- 1. Radioactivity and Radioactive Wastes
 - 1.1. Sources of Radioactive Waste
 - 1.1.1. Medical and Industrial Radionuclides and Wastes
 - 1.1.2. Reactor Wastes
 - 1.2. Radiation Accidents and Exposures to Workers and the General Public
 - 1.3. Protection of Workers and the Public
- 2. Categories Of Radioactive Wastes
 - 2.1. Low (and Intermediate) Level Wastes (LILW)
 - 2.2. Intermediate Level Wastes (ILW)
 - 2.3. High Level Wastes (HLW)
 - 2.4. Transuranic (TU) or Alpha Wastes
- 3. Radioactive waste management and disposal options
 - 3.1. Hospital and Reactor Wastes
 - 3.2. Transportation Regulations and Radiation Licenses
 - 3.3. Radioactive Waste Management
 - 3.3.1. Initial and Short-Term Waste Management
 - 3.3.2. Deep Geological Disposal
 - 3.4. Alternative Disposal Processes
 - 3.4.1. Deep Sea Disposal
 - 3.4.2. Transmutation
 - 3.4.3. Other methods
 - 3.4.4. Private and International Repositories

Nuclear Reactor Overview and Reactor Cycles

John K. Sutherland, Fredericton, New Brunswick, Canada

- 1. Nuclear Reactors and an Overview of Nuclear History
 - 1.1. World Reactors Summary
 - 1.2. Nuclear History Milestones
- 2. Nuclear Reactions
 - 2.1. Radioactive decay
 - 2.2. Spontaneous fission
 - 2.3. Induced Fission
 - 2.3.1. Neutron Sources
 - 2.3.2. Neutron Interactions and Losses
- 3. Nuclear Fuels, Reactors and Nuclear Reactor Development

xiii

- 3.1. Nuclear Fuels
 - 3.1.1. Fissile Nuclides
 - 3.1.2. Fertile Nuclides
- 3.2. Early Reactors
 - 3.2.1. The Sun
 - 3.2.2. The Oklo Reactor
 - 3.2.3. The Chicago Pile (CP-1)
 - 3.2.4. Military, Naval, Research, Breeder, and Transitional Reactors
- 4. Commercial Reactor Types
 - 4.1. Main Operating Reactors
 - 4.1.1. PWR
 - 4.1.2. BWR
 - 4.1.3. PHWR
 - 4.1.4. GCR
 - 4.1.5. LWGR
 - 4.1.6. Breeder Reactors
 - 4.2. Advanced and Future Reactors
 - 4.2.1. Fast Breeder Reactor (FBR)
 - 4.2.2. Accelerator-Driven System (ADS)
 - 4.2.3. Fusion Reactor
- 5. Reactor Cycles
 - 5.1. The Closed Nuclear Cycle
 - 5.2. The Open Nuclear Fuel Cycle
 - 5.3. The Fast Breeder Reactor (FBR) and Fuel Recycling

The Nuclear Reactor Closed Cycle

John K. Sutherland, Fredericton, New Brunswick, Canada

1. The Closed Nuclear Cycle

1.1. Introduction

- 2. Uranium Mining, Processing, Refining
 - 2.1. Ore processing, Concentration and Refining
- 3. Conversion to UF6
- 4. Enrichment
- 5. Depleted Uranium
- 6. Fuel Fabrication
- 7. Reactor Operation, Maintenance Wastes, and Spent Fuel
 - 7.1. Maintenance Wastes
 - 7.2. Spent Fuel
 - 7.3. Fission, Activation and Trans-Uranium Nuclides
 - 7.3.1. Fission Nuclides
 - 7.3.2. Activation Radionuclides
 - 7.3.3. Transuranium Nuclides
- 8. Spent Fuel Interim Storage, Prior to Reprocessing or Disposal
 - 8.1. Disposal
 - 8.2. Reprocessing
 - 8.3. Dry Storage of Spent Fuel
- 9. Fuel Reprocessing, Fuel Re-cycling and Advanced Reactors
 - 9.1. Fuel reprocessing
 - 9.2. Fuel re-cycling
 - 9.3. Reprocessing and the Closed Fuel Cycle
 - 9.4. Fuel Recycling
 - 9.5. Advanced Reactors (The Fast Breeder Reactor)

Safety of Boiling Water Reactors

Javier Ortiz-Villafuerte, Departamento de Sistemas Nucleares, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de México, 52045, México. Yassin A. Hassan, Department of Nuclear Engineering, Texas A&M University, College Station, USA

- 1. Introduction
- 2. Nuclear reactor designs
- 3. Nuclear reactor safety design
- 4. Power Peaking Factors
- 5. BWR Core Thermal Limits
 - 5.1. The Linear Heat Generation Rate Thermal Limit
 - 5.2. Boiling Heat Transfer in a Nuclear Reactor Core
 - 5.3. The Minimum Critical Power Ratio Thermal Limit
- 6. Nuclear Power Plant Security
- 7. Next Generation Reactor Designs

Supercritical Water-Cooled Nuclear Reactors: Review and Status

R.B. Duffey and I.L. Pioro, Chalk River Laboratories, Atomic Energy of Canada Limited (AECL), Chalk River, ON, Canada

- 1. Introduction
- 2. Survey of Concepts of Nuclear Reactors at Supercritical Pressures
 - 2.1. General Considerations
 - 2.2. Design Considerations
- 3. Supercritical Water-Cooled CANDU Reactor Concept
 - 3.1. General Design
 - 3.2. Preliminary Calculations of Heat Transfer at SCW CANDU Operating Conditions

The Gas-Turbine Modular Helium Reactor

M. P. LaBar, A. S. Shenoy, W. A. Simon and E. M. Campbell, *General Atomics, San Diego, California, USA*

Y. A. Hassan, Texas A&M University, USA

- 1. Introduction
- 2. GT-MHR Design Objectives
- 3. GT-MHR Design Description
 - 3.1. Fuel
 - 3.2. Reactor
 - 3.3. Power Conversion System
- 4. GT-MHR Safety
- 5. GT-MHR Economic Competitiveness
- 6. GT-MHR Environmental Benefits
- 7. GT-MHR Proliferation Resistance
- 8. Hydrogen Production Using the MHR
- 9. Development Pathway
- 10. Conclusions

Application of Risk Assessment to Nuclear Power Plants

Ernie Kee, Consulting Engineer: Risk Management, STPNOC Inc., Bay City Texas, USA.

284

- 1. Risk
 - 1.1. Purpose of PRA and an Example
 - 1.2. Analysis of the Tank Rupture
 - 1.3. Predicting the Tank Rupture

214

263

- 2. Use of Data
- 3. Results
- 4. Data
 - 4.1. Conditional Probability
 - 4.2. Bayes' Theorem
 - 4.3. Application of Bayes' Theorem
 - 4.4. Data Uncertainty
 - 4.5. Initiating Event Frequency
 - 4.6. Component Failure Rate
 - 4.7. Maintenance Outage
 - 4.8. Human Error Rate
 - 4.9. Common Cause
 - 4.10. Dependent Data
- 5. Data Update

Production and Recycling Resources for Nuclear Fission

Jean A. Vergnes, Institut Universitaire Int. de l'Eau, Universite d'Aix-Marseille, France

305

- 1. Introduction
- 2. Recycling of Initial U235 in the PWRs
- 3. Recycling Pu in Uranium Support Fuels
 - 3.1. Fissile Core Regeneration Factor
 - 3.2. Regeneration Factor of Fertile Blankets
 - 3.3. An Example of a Fast Reactor Multi-recycling Plutonium on a Uranium support, the European Fast Reactor (noted EFR)
 - 3.4. Savings in Uranium Purchases arising from Multi-recycling of Pu in an Incinerator
 - 3.4.1. Savings in Uranium Purchases arising from Multi-recycling of Pu in a PWR
 - 3.4.2. Savings in Uranium Purchases arising from Multi-recycling ph Pu in an Incinerator FR
 - 3.5. Savings in Uranium Purchases arising from Pu Multi-recycling in a Self-generating and Breeder FR
 - 3.6. Influence of Regeneration Gains
- 4. Uranium Recycling in Thorium Support Fuels
 - 4.1. U233 Fast Breeder Reactor
 - 4.2. U233 Self-generating Reactor
 - 4.3. Influence of Regeneration Gains
- 5. Conclusion

Index

About EOLSS

323