
CONTENTS

THERMAL TO MECHANICAL ENERGY CONVERSION ENGINES AND REQUIREMENTS

Thermal to Mechanical Energy Conversion Engines and Requirements - Volume 1 No. of Pages: 450 ISBN: 978-1-84826-021-4 (eBook) ISBN: 978-1-84826-471-7 (Print Volume)

Thermal to Mechanical Energy Conversion Engines and Requirements - Volume 2 No. of Pages: 308 ISBN: 978-1-84826-022-1 (eBook) ISBN: 978-1-84826-472-4 (Print Volume)

Thermal to Mechanical Energy Conversion Engines and Requirements - Volume 3 No. of Pages: 424 ISBN: 978-1-84826-023-8 (eBook) ISBN: 978-1-84826-473-1 (Print Volume)

For more information of e-book and Print Volume(s) order, please **click here**

Or contact : eolssunesco@gmail.com

CONTENTS

VOLUME I

Thermal to Mechanical Energy Conversion: Engines and Requirements

Oleg N. Favorsky, Division of Physical-Technical Problems of Energetics, Russian Academy of Sciences, Russia

- 1. Introduction: Brief Historical Review
- 2. General Information on Heat Cycles
- 3. Combustion of Fuel
- 4. Steam Engines and Machines
- 5. Piston Engines
- 6. Bladed Engines: Steam Turbines
- 7. Gas Turbines
- 8. Aircraft Gas Turbine Engines
- 9. Space Engines
- 10. Conclusion

Combustion Process and Combustion Products for Different Organic Fuels. Emission Problem Yuri M. Pchelkin, Department of Gas Turbine Plants, Bauman Moscow State University, Russia

- 1. Industrial fuel
- 2. Fuel combustion
- 3. Organic fuels and problem of toxic combustion products

Fundamentals of the Heat Transfer Theory

B.M.Galitseyskiy, Department of the - Aviation Space Thermotechnics, Moscow Aviation Institute, Russia

- 1. Types of Heat Transfer
- 2. Investigation Method of Heat Transfer
- 3. Differential Equations and Uniqueness Conditions
- 4. Simplified Equations
- 5. Transition from Laminar to Turbulent Flow
- 6. Heat Transfer Coefficient and Friction Resistance
- 7. Similarity and Modeling of Heat Transfer Processes
- 8. Criterial Equations for Convective Heat Transfer in the Boundary Layer
- 9. Criterial Equations for Convective Heat Transfer in Channels
- 10. Heat Conduction Process
- 11. Radiative Heat Transfer

Thermal Protection of Power Plants

B.M.Galitseyskiy, Department of Aviation Space Thermotechnics, Moscow Aviation Institute, Russia

- 1. Thermal protection methods.
- 2. Porous cooling.
- 3. Block cooling of surfaces

Heat Exchange Apparatus

G.A. Dreitser, Department of Aviation Space Thermotechnics, Moscow Aviation Institute, Russia

108

86

1

40

- 1. Introduction
- 2. Purpose of Heat Exchangers
- 3. Classification of heat exchangers
- 4. Classification of recuperative heat exchangers
- 5. Fundamentals of thermal calculation of heat exchangers
 - 5.1. Heat Balance Equation
 - 5.2. Heat Transfer Equation
 - 5.3. Determination of Heat Transfer Coefficient
 - 5.4. Determination of Mean Temperature Difference
 - 5.5. Calculation of Final Temperatures of Heat Carriers
 - 5.6. Comparison of the Parallel Flow with the Counter Flow
- 6. Hydraulic calculation of heat exchangers
 - 6.1. Friction Pressure Losses
 - 6.2. Pressure Losses on Local Resistances
 - 6.3. Pressure Losses due to the Flow Acceleration
 - 6.4. Self-propulsion Pressure Losses

Heat Transfer Enhancement

G.A. Dreitser, Department Aviation Space Thermotechnics, Moscow Aviation Institute, Russia

- 1. Introduction
- 2 Statement of the problem
- 3. Tubular heat exchangers with one-phase heat carriers
- 4. Tubular Evaporative Heat Exchangers
- 5. **Tubular Condensers**

Thermodynamic Cycles of Reciprocating and Rotary Engines 142

R.S.Kavtaradze, Moscow Bauman State Technical University, Russia.

130

- 1. The main kinds of reciprocating engines
- Work Done by a Working Fluid in the Cylinder of a Reciprocating Engine 2
- 3. Working Process and Indicator Diagram of a Four-stroke Engine
- 4. Working Process and Indicator Diagram of a Two-stroke Engine
- 5. Main Concepts of Thermodynamics
- 6. Main Distinctions Between Actual and Thermodynamic Cycles and Efficiency of a Cycle
- 7. Carnot cycle
- 8. Generalized Thermodynamic Cycle of Piston and Combined Engines
- 9. Otto cycle
- 10. Diesel cycle
- 11. Trinkler cycle
- 12. Comparative analysis of thermodynamic cycles of piston engines
- 13. Combined internal combustion engines (CICE)
- 14. Thermodynamic cycle of CICE with the impulse turbine
- 15. Thermodynamic Cycle of CICE with Constant Pressure in Front of the Turbine
- 16. Thermodynamic cycle of CICE with intermediate cooling of a working fluid
- 17. Stirling cycle
- 18. About the thermodynamic cycles of rotary internal combustion engines (ICE)

Thermodynamic Cycles of Power and Transport Gas Turbine Engines

V. S. Beknev, Department of Power Engineering, Moscow Bauman State Technical University, Russia.

- 1. Introduction
- 2. Energy diagrams and main parameters of power, driving and transport GTE (GTU).
 - 2.1. Thermodynamic cycles of open cycle GTU 2.1.1. Ideal cycle

- 2.1.2. Actual cycle
- 2.1.3. Compression process
- 2.1.4. Heat exchange and combustion p=const processes
- 2.1.5. Expansion process
- 2.1.6. Optimum parameters of the actual cycle of the simplest GTE.
- 2.2. Actual regenerative cycles
- 2.3. Actual intermediate cooling cycles
- 2.4. Actual intermediate heating cycles
- 3. Energy diagrams of the closed cycle GTU
 - 3.1. Closed cycle on liquid metal vapors, on low boiling substances and dissociating gases
 - 3.2. Energy diagrams and cycles of semi-closed GTU(SCGTU)
- 4. Energy diagrams and main parameters of combined GTU
 - 4.1. Steam-gas and gas-gas combined units
 - 4.2. Combined units with GTU and MHDG units
 - 4.3. Combined units with CCGTU and MHDG
 - 4.4. Combined ternary gas-gas-steam units

Thermodynamic Cycles of Aviation Gas Turbine Engines

V.B. Rutovsky, Moscow State Aviation Institute (Technical University), Russia

- 1. Basic Types and Concepts of Air-breathing Turbojet Engines
- 2. Ideal Air-breathing Turbojet Cycle
- 3. Real TJE Thermodynamic Cycles
- 4. Cycles of Combined Aviation Engines

Thermodynamic Cycles of Direct and Pulsed - Propulsion Engines

V. B. Rutovsky, Moscow State Aviation Institute. Russia.

- 1. Cycles of Piston Engines of Internal Combustion.
- 2. Jet Engines Using Liquid Oxidants
- Compressor-less Air-Breathing Jet Engines
 Ramjet engine (with fuel combustion at *p* = const)
- 4. Pulsejet Engine.
- 5. Cycles of Gas-Turbine Propulsion Systems with Fuel Combustion at a Constant Volume

Thermodynamic Cycles of Rocket Engines

V.M. Polyaev, Department of Rocket Engines, Moscow Bauman State Technical University, Russia V.A. Burkaltsev, Department of Rocket Engines, Moscow Bauman State Technical University, Russia

- 1. Introduction
- 2. Ideal cycle
- 3. Cycle thermal efficiency
- 4. Energy dissipation
- 5. Losses into engine chamber

Noise Problems

Valeri G. Nesterenko, Faculty "Engines of aircraft", Moscow aviation institute (engineering university), Russia.

- 1. Physical fundamentals of noise and sound
 - 1.1. Concepts about noise and sound
 - 1.2. Basic parameters and performances
- 2. Effect of noise on the human being
 - 2.1. Action of a noise

262

iii

204

228

- 2.2. Correction of a level of sound pressure
- 2.3. Level of a perceived noise
- 2.4. Effective level of a perceived noise
- 3. Norms on admissible level of environmental aircraft noise and noise of ground GTE
 - 3.1. Noise of AC's
 - 3.2. Noise of helicopters
 - 3.3. Noise in cabins
 - 3.4. Noise of ground GTP
 - Sources of a noise of AJE
 - 4.1. Total characteristic of sources of noise.
 - 4.2. PROP of TPE
 - 4.2.1. Component of a noise of propeller
 - 4.2.2. Methods of calculation of noise level of propeller
 - 4.3. Fan TFE, compressor GTE
 - Sources and level of noise 4.3.1.
 - Lowering of a noise of the compressor 4.3.2.
 - 4.4. Combustion chamber of GTE
 - 4.5. Turbine of GTE
 - 4.6. Jet nozzle of AJE
 - Acoustic power and level of a force of a sound 4.6.1.
 - 4.6.2. Application of noise mufflers
- 4.7. Sound-absorbing constructions and their application
- Tests for the definition of acoustic performances of GTE 5.
 - 5.1. Acoustic performance of GTE
 - 5.2. Measuring of a noise of engine
 - 5.3. Muffling of a noise at tests
- Factors, influencing to restriction of an aviation noise 6.
- Acoustic influence of transport, problem of slackening of a noise 7.
- 8. Noise of power plants of a ground transport
 - 8.1. Radiants of a noise and their relative significance
 - 8.2. Radiants of a noise of internal combustion engine
 - 8.3. Methods of lowering of a noise of engine
- Vibroacoustic diagnostics 9.

Piston Internal Combustion Engines

324 Mikhail G. Shatrov, Heat Technology and Automotive Engines Division, State Technical University -MADI (Moscow Automobile and Road Construction Institute), Russia. Igor V. Alekseev, Heat Technology and Automotive Engines Division, State Technical University - MADI (Moscow Automobile and Road Construction Institute), Russia.

- 1. General information
- 2. **Basic Concepts**
 - 2.1. Geometric Parameters
 - 2.2. Air Access Coefficient
 - 2.3. Filling Efficiency
 - 2.4. Valve Timing Phases
 - 2.5. Energy Balance of a Piston-type Internal Combustion Engine
 - 2.6. Indicated and effective parameters of piston-type internal combustion engine
- The working process of piston-type IC engines
 - 3.1. The Working Processes of a Four-stroke Spark Ignition IC Engine
 - 3.2. The Working Processes of a Four-stroke Diesel
 - 3.3. Two-Stroke Engine
- 4. Brake power per liter and methods of engines boosting
- Concept of Performance Maps and Operating Modes of IC Engines 5

Stirling Engine

Gaivoronsky Alexander Ivanovich, Department of the Bauman Moscow State Technical University, Russia

- 1. Introduction
- 2. Thermodynamics
- 3. Variants in engine configuration
- 4. The influence of the surroundings
- 5. Engine characteristics and control
- 6. Historical survey in brief
- 7. The present and the future of stirling engines

Index

About EOLSS

VOLUME II

Gas Turbine Engines for Marine and Road Transport

N.I.Troitsky, Associated Professor, Ph.D., Department of Power Engineering, Moscow State Technical University named after Bauman, Russia

1. Introduction

3.

- 2. Requirements of the transport power plants
 - 2.1. Requirements determined by load distinctions
 - 2.2. Requirements determined by operational conditions
 - Gas turbine development for marine and traffic transport
 - 3.1. GT for ground transport
 - 3.2. Gas turbine ship plants
 - 3.3. Gas turbine for the railway traffic
- 4. Cycles and schemes of traffic and marine gas turbine
- 5. Design peculiarities of transport gas turbine units
 - 5.1. Marine power units
 - 5.2. Ground transport gas turbine
 - 5.3. Measures caused by operational conditions in transport gas turbine
 - 5.3.1. Ways and purification systems of gas turbine from soiling
 - 5.3.2. Problems resulted from heavy fuel usage
 - 5.3.3. Braking and reverse ways of vehicles
- 6. Problems and development outlooks of transport GT
- 7. Conclusion

Gas Turbine and Wind Turbine Engines for Power Stations

Eduard A. Manushin, Department of Power Engineering, Bauman Moscow State Technical University, Russia

- 1. Introduction
- 2. Gas Turbine Units and Combined Units on Liquid and (or) Gaseous Fuels
 - 2.1. Gas Turbine Units Working on an Open Thermodynamic Cycle
 - 2.1.1. Units of the Industrial Type
 - 2.1.2. Units on the Basis of Aviation Prototypes
 - 2.1.3. Combined Units with Gas and Steam Turbines
 - 2.2. Gas Turbine Units of the Closed and Semi-closed Cycles and Combined Units including them
 - 2.2.1. Gas Turbine Units of a Closed Cycle
 - 2.2.2. Semi-closed Gas Turbine Units
- 3. Gas Turbine Units and Combined Units using Solid Fuel

v

345

379 385

1

- 3.1. Gas Turbine Units on Solid Fuel working on a Closed Cycle
- 3.2. Combined Units with Gas and Steam Turbines on Solid Fuel
- 4. Gas Turbine Units on Nonconventional Power Sources
 - 4.1. Air-accumulating Gas Turbine Units
 - 4.2. Solar Gas Turbine Units
- 5. Installations on Nuclear Fuel
- 6. Influence of Power Gas Turbines and Combined Units on an Environment
- 7. Wind Turbines

Gas Turbine and Wind Turbine Engines for Mechanical Drives

E.A. Manushin, Professor, Doctor of Technical Sciences, Department of Power Engineering, Moscow State Technical University named after Bauman, Russia

- 1. Introduction
- 2. Stationary gas turbine drive units
 - 2.1. Features and Parameters of Gas Turbine Drive Units
 - 2.2. Technical and Economic Parameters of Gas Turbine Drive Units
 - 2.2.1. GTU Drives for Gas Pipelines
 - 2.2.2. Industrial Gas Turbine Units
 - 2.3. Gas Turbine Units for Gas-compressor Stations
 - 2.4. Industrial (Technological) Gas Turbine Units
 - 2.4.1. GTU for Oil Refineries
 - 2.4.2. Gas Turbine Units for Chemical Factories
 - 2.4.3. GTU for Metallurgical Works
- 3. Transport gas turbine and combined engines
 - 3.1. Features and Parameters of Transport Gas Turbine and Combined Engines
 - 3.1.1. Marine Engines
 - 3.1.2. Locomotive Installation
 - 3.1.3. Gas Turbine Engines for Wheel and Track Machines
 - General features of transport gas turbine engines
 - 4.1. Work on Variable Modes
 - 4.2. Acceleration Capability
 - 4.3. Methods of Braking and Reversal
- 5. Engines for vessels

4

- 5.1. Methods of Reversal for Vessels with Gas Turbine Engines
- 5.2. Schemes and Parameters of Marine Gas Turbine Engines
- 5.3. Gas Turbine Engines for VUW and SES
- 6. Marine driving and auxiliary gas turbine units
- 7. Combined marine installations with gas turbine engines
- 8. Use of aviation gas turbine engines for marine vessels
- 9. Ways of noise reduction of marine gas turbine engines
- 10. Gas turbine engines for locomotives
- 11. Gas turbine engines for wheel and track machines
- 12. Wind turbines for mechanical drives

Supersonic Aircraft Engines

V. B. Rutkovsky, Moscow State Aviation Institute (Technical University), Russia

110

70

1. Introduction

2.

- Turbojet engines for supersonic flight velocities
- 2.1. Intake Sections of Turbojets for Supersonic Flight Velocities
- 2.2. Turbojet Compressors for Supersonic Flight Velocities
- 2.3. Exhaust Units of Turbojets for Supersonic Flight Velocities
- 3. Features of gas-turbine jets for high M
- 4. Combined engines for supersonic flight velocities
- 5. Supersonic and Hypersonic Air-feed Ramjet Engines

Liquid Propellant Rocket Engines

V.M. Polyaev, Department of Rocket engines, Bauman Moscow State Technical University, Russia. V.A. Burkaltsev, Department of Rocket engines, Bauman Moscow State Technical University, Russia.

- 1. Introduction
- 2. LRE general information
- 3. Main LRE parameters
- 4. LRE structure and liquid rocket engine installations (LREI) schemes
- 5. Historical reference
- 6. LRE development tendencies
- 7. Conclusions

Solid Propellant Rocket Engines

V.M. Polyaev, Department of Rocket engines, Bauman Moscow State Technical University, Russia. V.A. Burkaltsev, Department of Rocket engines, Bauman Moscow State Technical University, Russia.

- 1. Introduction
- 2. Historical information
- 3. SPRE scheme and main units
- 4. SPRE operation
- 5. Parameter optimization, the approach and results
- 6. Transient regime
- 7. Service
- 8. Development prospects
- 9. Conclusions

Periodic - Combustion Gas Turbine Engines (Units)

V.E.Mikhaltzev, Moscow State Technical University n.a. Bauman, Russia V.D.Molykov, Moscow State Technical University n.a. Bauman, Russia

- 1. Introduction
- 2. GTE of periodic combustion with three-valved and by two-valved chambers
 - 2.1. GTE Design
 - 2.2. Compression Process and Filling of Combustors
 - 2.2.1. Filling of a Three-valve Combustor after Scavenging
 - 2.2.2. Filling of the Chamber at Constant Pressure
 - 2.3. Process of Combustion and Expansion in the Turbine
 - 2.3.1. Process of Combustion at constant Specific Volume
 - 2.3.2. Process of Expansion after Combustion at v = const
 - 2.4. Specific Parameters of GTE
 - 2.4.1. Efficiency and Specific Power of an Ideal Cycle v = const
 - 2.4.2. Specific Operation by Elementary GTE v = const
- 3. GTE of Periodic Combustion with One-Valved Chambers
 - 3.1. Plan Gas Turbine Engines with Periodic Combustion Chambers
 - 3.1.1. Plan of Engines with Chambers of Waved Type
 - 3.1.2. Plan of a GTE with Short One-valved Combustors
 - 3.2. Process of Combustion with a Gas Cushion (mode I)
 - 3.2.1. Parameters of Process of Combustion
 - 3.2.2. Air and Fuel Supply in the Chamber
 - 3.2.3. Operation of the Turbine of Periodic Combustion
 - 3.3. Process of Combustion at Complete Filling of the Chamber (mode II)
 - 3.3.1. Parameters of Process of Combustion
 - 3.4. Velocity of Heat Release in the Chamber of Periodic Combustion
- 4. Efficiency of GTE of periodic combustion
 - 4.1. Choice of Parameters of GTE of Periodic Combustion
 - 4.2. Different Application of Installations of Periodic Combustion

151

166

- 4.2.1. Installation with Wave Combustors
- 4.2.2. GTE with Two-valved Chambers
- 4.2.3. GTE with One-valved Chambers
- 4.3. Rise of Efficiency of GTE p = const at Periodic Combustion on Maximum Power Conditions
 - 4.3.1. Operation of the Compressor at Transition of GTE from a Mode p = const to a Mode of Periodic Combustion
 - 4.3.2. Programs of Regulation of GTE of Periodic Combustion

The Hydroreacting Marine Solid Fuel Rocket Engines	201
I.V.Garanin, Moscow State Aviation Institute (Technical University), Russia.	

- 1. General information about hydroreacting marine solid fuel propulsion
- 2. Underwater apparatus propulsive quantities investigation
- 3. Foundations of HRE classification
- 4. Fuels and their requirements
 - 4.1. Energy characteristics of fuels
 - 4.2. Peculiarities of the HRF burning process organization
- 5. Description of the principal schemes of HRF engines
- 6. Main engine's and apparatus' parameters correlation
- 7. Thermodynamic calculation in HRE using HRF and its peculiarities 7.1. Combustion chamber thermodynamic calculation
- 8. The effective thrust notification
- 9. Characteristics of HRE using HRF
- 10. The HRE efficiency
 - 10.1. Depth and throttling characteristics calculation
 - 10.2. The HRE combustion chamber calculation
 - 10.3. The burning zone injection head calculation
 - 10.4. The mixture zone injection head calculation
- 11. Conclusion

Index

About EOLSS

VOLUME III

Turbines

E.A. Manushin, Professor, Doctor of Technical Sciences, Department of Power Engineering, Moscow State Technical University named after Bauman, Russia

1. Introduction

- 1.1. Hydraulic and Steam Turbines
- 1.2. Gas turbines
- 1.3. Terms 'turbine' and 'unit'
- 2. The common information on work of turbines of various types
 - 2.1. Principles of the turbine work
 - 2.2. Classification of turbines
 - 2.3. Thermodynamic and kinematic parameters of the one-stage turbine
 - 2.3.1. Change of parameters in a stage
 - 2.3.2. Degree of reaction of a stage
 - 2.3.3. Specific work and efficiency of the turbine
- 3. Multistage turbines
 - 3.1. Velocity stages and pressure stages
 - 3.2. Change of parameters on height of a flow passage of the turbine

239

243

- 4. Feature of a radial flow (centripetal) turbines
- 5. Characteristics of turbines
- 6. Steam turbines and steam turbine units
 - 6.1. Steam turbines
 - 6.1.1. Main parameters of steam turbines
 - 6.1.2. Main types of steam turbines
 - 6.1.3. Basic thermodynamic parameters of steam turbine units
 - Ways of increase of efficiency of steam turbine units
- 8. Gas turbines and gas turbine units
 - 8.1. Features of gas turbines
 - 8.2. Basic thermodynamic parameters of gas turbine units
 - 8.3. Ways to increase the efficiency of gas turbine units
- 9. Multi-modular units with gas turbines
- 10. Gas turbine units working on a closed thermodynamic cycle
- 11. Combined units with steam and gas turbines
 - 11.1. Feature of the combined turbine units
 - 11.2. Basic schemes and thermodynamic cycles of the combined turbine units
- 12. Cooling of gas turbines

Compressors

2.

7.

V. S. Beknev, Department of Power Engineering, Moscow Bauman State Technical University, Moscow, 107005, Russia

- 1. Compressor Definition, Types of Compressors
 - 1.1. Axial flow compressor (AFC)
 - 1.1.1. AFC stage
 - 1.1.2. Stage parameters
 - 1.1.3. Multistage axial flow compressor (MAFC)
 - 1.2. Radial flow compressor (RFC)
 - 1.2.1. RFC stage
 - 1.2.2. RFC stage parameters
 - 1.2.3. Multistage RFC (MRFC), its parameters
 - 1.3. Combined compressors (CC)
 - 1.3.1. Turbine compressor (TC)
 - 1.3.2. Parameters and the fields of application of the CC
 - Basic equations for the gas dynamic compressor design
 - 2.1. Basic equations of the fluid mechanics
 - 2.1.1. Flow rate equation
 - 2.1.2. Impulse equations (L. Euler)
 - 2.1.3. Energy equation (Bernoulli). The gas dynamic functions.
 - 2.2. Basic thermodynamic equations
 - 2.2.1. First law equation
 - 2.2.2. Second law equation
 - 2.2.3. Processes of the compression and the expansion
 - 2.3. Diagrams T-s and p-v for these processes
 - 2.3.1. Loss coefficients interconnection for the flow in the channel
- 3. Gas dynamic compressor design
 - 3.1. Axial flow compressor stage design
 - 3.1.1. Plane cascade. Joukovski's formulas
 - 3.1.2. Plane cascade performance
 - 3.1.3. Untwisted straight blade cascade. The endwall losses
 - 3.1.4. MAFC stage design
 - 3.2. Radial flow compressor stage design
 - 3.2.1. RFC rotor design
 - 3.2.2. Vaneless diffuser (VLD) design
 - 3.2.3. Vaned diffuser (VD) design
 - 3.3. Inlet and outlet duct design

- 4. Blade (vane) and duct design
 - 4.1. Axial flow compressor rotor and stator design. The chord estimation
 - 4.2. RFC stage itself design
 - 4.3. Duct design
- 5. Gas dynamic compressor performance, modeling and control

Combustor Chambers

A.G. Tumanovsky, All-Russian Thermal Engineering Institute, Moscow, Russia

- 1. Introduction
- 2. Gas Turbine Combustor and its application.
- 3. Brief prehistory.
- 4. Combustor arrangement in gas turbine system.
- 5. Basic combustor components.
- 6. Combustor operation and maintenance.
- 7. Prospects of application of combustors.

Piston Groups

N. D. Chainov, Moscow State Technical University, Moscow, Russia

- 1. Introduction
- 2. Piston Construction Features of Different Engine Types
- 3. Calculation of Thermal and Stress-Strain State of the Piston.
- 4. Calculation of Thermal and Stress-Strain State of a Ring.
- 5. Strength Calculation of a Piston Pin

Reduction Gears

Valeri G. Nesterenko, Faculty "Engines of aircraft", Moscow aviation institute (engineering university), Russia.

- 1. Introduction
- 2. Reduction Gears of air jet engines and helicopter turboshaft engines
 - 2.1. Function and basic performances of RGs
 - 2.2. Transmission ratios of RGs
 - 2.3. Classification and kinematic diagrams of RGs
 - 2.4. Strength analysis of teeth. Definition of the basic sizes of toothed transmissions.
 - 2.5. Construction of RGs
 - 2.5.1. General items: structure of units and their arrangement
 - 2.5.2. Toothed cylindrical and conical wheels
 - 2.5.3. Pinion carriers of epicyclic gear trains
 - 2.5.4. Housings of RGs. Shafts and their supports.
 - 2.5.5. Overriding clutches
 - 2.6. Lubrication of RGs
 - 2.7. Drives of assemblies
 - 2.8. Typical damages of toothed engagements of RGs in maintenance
- 3. Reduction Gears of ship turbines
 - 3.1. General information: assignment and their performances
 - 3.2. Toothed transmissions, schemes and arrangements
- 4. Reduction gears of piston aircraft engines

Nozzles of Air-Breathing Turbojets

V. B. Rutovskii, Moscow State Aviation Institute (Technical University), Russia

1. General features of flow in nozzles

144

112

- 2. Basic Parameters of Nozzles
- 3. Subsonic exhaust units
- 4. Exhaust units for supersonic flight velocities
- 5. Adjustable exhaust units
- 6. Thrust Reversal in Nozzles
- 7. Nozzles with thrust vectoring function
- 8. Nozzles of hypersonic jet engines

Control and Fuel Feed Systems

Markov Vladimir Anatolyevich, Doctor of Engineering Sciences, professor of "Thermal Physics", Department of the Bauman Moscow State Technical University, Russia

- 1. Introduction
- 2. Classification of control systems and short history of their development
- 3. Control and fuel feed systems in piston engines with compression ignition (diesel engines)
- 4. Control and fuel feed systems in piston engines with forced ignition (gasoline engines)
- 5. Control and fuel feed systems in gas turbines

Lubrication Systems

Valeriy G. Nesterenko, Faculty "Engines of Aircraft", Moscow Aviation Institute (Engineering University), Russia.

- 1. Introduction
- 2. General information on friction and lubrication
- 3. Aviation oils, requirements and service properties
- 4. Purpose, structure and functioning of oil systems
- 5. Kinds of lubrications of aircraft engines friction units. Scavenging of heat by oil and required oil circulation
- 6. Friction and lubrication of ball and roller bearings in aviation GTEs
 - 6.1. Friction and Magnitude of Friction Coefficient in Rolling-element Bearings
 - 6.2. Purposes and Tasks of Oil Circulation
 - 6.3. Rated Estimation of GTE Compressor Roller Bearings' Thermal Mode
 - 6.4. Procedure of Calculation of GTE Compressor Ball Bearings' Thermal Mode
 - 6.5. Procedure of Calculation of GTE Turbine Supports Roller Bearings' Thermal Mode
 - 6.6. Calculation of TPE's Reduction Gears Bearings' Thermal Mode
- 7. One-shot lubrication system of a GTE with short service life
- 8. Sealing of GTE rotor support bearings oil chambers
- 9. Lubrication and cooling of plain bearings
 - 9.1. Construction and Calculation of Supports with Plain Bearings
 - 9.2. Calculation of Oil Consumption through the Plain Bearing
 - 9.2.1. The Radial Bearings
 - 9.2.2. The Axial Plain Bearings
- 10. Circulation of oil and capacity of a lubrication system of aircraft GTEs 10.1. Requirements to Circulation of Oil in GTE
 - 10.2. Quantity of Heat, going into Oil in GTE Rotor Supports
- 11. The schemes of lubrication systems and systems of aircraft GTEs breathing
 - 11.1. The Schemes of Lubrication Systems
 - 11.2. Systems of Breathing
- 12. Peculiarities of maintenance of aircraft GTEs OS
- 13. Compressor station and GPA: oil-supply systems, oil cleaning machines and system of oil cooling 13.1. Systems of Oil-supply of Compressor Station and of GPA
 - 13.2. Oil Cleaning Machines
 - 13.3. System of Oil Cooling
- 14. Lubrication systems of PE
 - 14.1. Kinds of Lubrication Systems
 - 14.2. Adjusting and Controlling Devices

14.3. Additional devices of a lubrication system

Heat Exchangers

V.L. Ivanov, Power Engineering Department, Moscow Bauman State Technical University, Moscow, Russia

- 1. Introduction
- 2. Heat exchanger role in gas turbine units
- 3. Types of heat exchangers. Principle of operation
- 4. Heat exchanger pressure drop influence on the efficiency and the capacity of gas turbine installations
- 5. Heat exchanger pressure drop
- 6. Heat transfer surface types of heat exchangers
- 7. Heat transfer through heat transfer surface
- 8. Design of recuperative- type heat exchangers
 - 8.1. Heat Exchangers with Predetermined Magnitude of Working Fluid Pressure Drops
 - 8.2. Heat Exchangers with Fixed Gabarit
 - 8.3. Cross-flow Heat Exchanger with Predetermined Heat Transfer Surface Area F
 - 8.4. Liquid Coupled Indirect Type Heat Exchangers
- 9. Design of regenerative type heat exchangers
 - 9.1. Regenerative Heat Exchanger with Rotating Matrix
 - 9.2. Regenerative Heat Exchanger with Stationary Matrix
- 10. Temperature expansion compensation system
- 11. Fouling problem
- 12. Conclusion

Index

355

317

About EOLSS