CONTENTS

NATURAL DISASTERS

Natural Disasters - Volume 1 No. of Pages: 280 ISBN: 978-1-84826-309-3 (eBook) ISBN: 978-1-84826-759-6 (Print Volume)

Natural Disasters - Volume 2 No. of Pages: 390 ISBN: 978-1-84826-310-9 (eBook) ISBN: 978-1-84826-760-2 (Print Volume)

For more information of e-book and Print Volume(s) order, please **click here**

Or contact : eolssunesco@gmail.com

CONTENTS

VOLUME I

Natural Disasters

Vladimir M. Kotlyakov, Institute of Geography, Russian Academy of Sciences, Moscow, Russia

- 1. Introduction
- 2. The role of hazards in the life of nature and society
 - 2.1. Natural Hazards and Their Gravity
 - 2.2. Factors Initiating Natural Hazards
 - 2.3. Natural Hazards in the Twentieth Century and the More Immediate Future
- 3. Geological disasters
 - 3.1. Earthquakes
 - 3.2. Tsunami
 - 3.3. Volcanic Eruptions
 - 3.4. Rockbursts
- 4. Natural hydrometeorological disasters
 - 4.1. Droughts, Dry Winds, and Dust-Storms
 - 4.2. Atmospheric Vortices
 - 4.3. Solid Precipitation and Snowstorms
 - 4.4. Floods and High Waters
 - 4.5. Forest and Peatbog Fires
- 5. Natural hazards in mountains
 - 5.1. Landfalls and Landslides
 - 5.2. Mudflows
 - 5.3. Snow Avalanches
 - 5.4. Glacier Surges

Geological Catastrophes

G.A. Sobolev, Joint Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia

- 1. Introduction
- 2. Earthquakes
 - 2.1. The earthquake source
 - 2.2. The strength of an earthquake
 - 2.3. Intensity of seismic oscillations
 - 2.4. Damages from earthquakes
 - 2.5. The efforts to be taken to control seismic hazards
- 3. Tsunami
 - 3.1. Efforts to be taken in the struggle with tsunami
- 4. Eruption of volcanoes
 - 4.1. Location and geological structure of volcanoes
 - 4.2. Precautions against eruptions
- 5. Rockbursts
 - 5.1. The type and energy of rockbursts
 - 5.2. Precautions to be taken for control of rockbursts

The Nature of Earthquakes

Eugene A. Rogozhin, United Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia

- 1. Distribution of earthquakes on the Earth
- 2. Reasons for earthquakes in the Earth's crust

i

70

1

- 3. Types of the Earth's lithosphere and Plate Tectonics
- 4. Types of seismic waves
- 5. Measurement of the size of an earthquake
- 6. The models of earthquake source
- 7. Nature of deep (mantle) earthquakes
- 8. Earthquake recurrence interval study
- 9. Earthquakes as a motor for geodynamic processes
- 10. Correspondence of an earthquake with time and weather
- 11. Conclusion

Earthquake Parameters Including Strong Earthquakes

S.L.Yunga, United Institute of physics of the Earth, Russian academy of sciences. B. Gruzinskaya, 10, Moscow, 123810, Russia

- 1. Introduction
- 2. Locating an earthquake
- 3. Earthquake magnitude and intensity
- 4. Data distribution
- 5. Seismic moment and moment magnitude
- 6. Focal mechanism of earthquake
- 7. Design parameters for use in engineering applications
- 8. Perspectives

Induced Seismicity

A.V. Nikolaev, Joint Institute of Physics of the Earth, Russian Academy of Sciences, Russia

- 1. Introduction
- 2. Seismicity induced by natural processes
 - 2.1. Triggering of earthquakes by the Earths tide
 - 2.2. Changes of the Earths rotation speed
 - 2.3. Meteorological processes
 - 2.4. Strong earthquakes
- 3. Seismicity induced by technogenic impacts
 - 3.1. Creation of large dams and reservoirs
 - 3.2. Oil and gas extraction
 - 3.3. Underground nuclear tests
 - 3.4. Action of powerful electric pulses over the Earths crust
- 4. Discussion
 - 4.1. Induced seismicity and earthquake precursors
 - 4.2. Evolution of an earthquake source and its sensitivity to initiating action
 - 4.3. Simultaneous action of several initiating processes
 - 4.4. Two types of initiating processes: in concord with nature and against it
 - 4.5. On possibility of management of tectonic energy discharge and lessening of seismic risk
 - 4.6. The "tectonic weapon" issue
- 5. Conclusion

Seismic Zoning

V.I. Ulomov, United Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia

- 1. Earthquake Hazard
- 2. Global Seismicity
 - 2.1. Global orderliness of seismogenic regions
 - 2.2. Regional Structure of Seismicity
- 3. Models of Earthquake Occurrence Source Zones

ii

119

88

- 3.1. Lineament-Domain-Source Model
- 3.2. Seismic Regime of Earthquake Source Zones
- 3.3. Virtual Seismicity
- 4. Model of Seismic Effect
- 5. Probabilistic Seismic Zoning
- 6. Global Seismic Hazard

Seismological Observations and Geodynamic Zoning Predictions

O.E.Starovoit, Geophysical Survey, Russian academy of sciences: Lenin str., 189, Obninsk, : 249020, Russia

S.L. Yunga, United Institute of physics of the Earth, Russian academy of sciences. B. Gruzinskaya, 10, Moscow, 123810, Russia

- 1. Historical overview
- 2. Current seismological observations
 - 2.1. Global seismic net
 - 2.2. Regional seismic nets
- 3. Seismicity of the Earth and geodynamic zones
- 4. Perspectives

Tsunamis: Causes, Consequences, Prediction, and Response

Boris W. Levin, Shirshov Institute of Oceanology, RAS, Moscow, Russia

- 1. Introduction
- 2. Causes of tsunamis.
 - 2.1. Generation of a tsunami by earthquake
 - 2.2. Tsunamis induced by submarine landslide and landfall
 - 2.3. Eruption of a submarine volcano as a cause of tsunamis
 - 2.4. Tsunamis created by atmospheric disturbances
 - 2.5. Tsunami generated by the impact of a cosmic body into the ocean
 - 2.6. Decomposition of a gas hydrate as the possible cause of a tsunami
- 3. Consequences of tsunamis and kindred phenomena.
- 4. Tsunami prediction and tsunami warning systems around the world.
- 5. Tsunami mitigation and steps to reduce potential losses

Volcanism: Geological and Geographic Perspectives

Saltykovsky Arthur Ja., Joint Institute of the Physics of the Earth, Russian Academy of Sciences, Moscow, Russia

- 1. Introduction
- Geographical distribution 2.
- 3. Geological relationships: the comparison of continental and oceanic volcanism
- 4. Volcanic rocks of the ocean basins
- 5. Volcanism of continental areas
- Orogenic volcanism 6

Volcanism: Historical and Human Perspectives

Yu. S. Genshaft, United Institute of Physics of the Earth, Russian Academy of Sciences Moscow, Russia

- Volcanoes as rebuilders of landscape 1.
- Volcanism and biosphere 2.
- 3. Catastrophic eruptions
- 4. Counteraction to lava flow

iii

187

207

164

- 5. Prediction of eruptions
- 6. Volcanoes as benefactors

Clin A.V	mate-Related Hazards /. Kislov, Moscow State University, Russia	220	
A.N	J. Krenke, Institute of Geography, Russian Academy of Sciences, Russia.		
1. 2. 3. 4. 5. 6.	Introduction Description and major types of climate-related natural hazards Interdependence and scale of the various climate-related hazards Comparative analysis of climate-related natural hazards Human perception of climate-related hazards Forecast and prediction of climate-related hazards		
Droughts: Causes, Distribution, and Consequences A.N. Zolotokrylin, <i>Institute of Geography, Russian Academy of Sciences, Moscow, Russia</i>		239	
1. 2. 3. 4. 5. 6.	What Is Drought? Criteria of Drought Causes of Drought Possibility of Predicting Droughts Distribution of Droughts Consequences of Droughts		
Index		259	
Ab	About EOLSS		

VOLUME II

Dry Winds, Dust Storms, and Prevention of Damage to Agricultural Land	1
A.N. Zolotokrylin, Institute of Geography, Russian Academy of Sciences, Moscow, Russia	

- 1. Dry winds
 - 1.1. What is Dry Wind?
 - 1.2. Criteria of Dry Winds
 - 1.3. Distribution of Dry Winds
 - 1.4. Dry Wind Control
- 2. Dust Storms
 - 2.1. What is a Dust Storm?
 - 2.2. Factors of Dust Storms
 - 2.3. Classification of Dust Storms
 - 2.4. Distribution of Dust Storms
 - 2.4.1. Russia, the Ukraine, Kazakhstan
 - 2.4.2. United States of America
 - 2.4.3. Aral Region
 - 2.4.4. Sahara
 - 2.5. Large-scale Airborne Dust Transport
 - 2.6. Prevention of Damage to Agricultural Lands

iv

Cyclones, Hurricanes, Typhoons, and Tornadoes

A.B. Shmakin, Institute of Geography, Russian Academy of Sciences, Moscow, Russia

- 1. Atmospheric whirls of different scales and origin
 - 1.1. Cyclones: large-scale whirls
 - 1.1.1. Tropical cyclones, hurricanes and typhoons: hot beasts of the oceans
 - 1.1.2. Cyclones beyond tropics: temperature jump
 - 1.2. Tornadoes: small, but terrifying
- 2. What are they like?
 - 2.1. How big, how strong?
 - 2.1.1. Cyclones: smaller and stronger in the tropics
 - 2.1.2. Tornadoes: more power beyond tropics
 - 2.2. How they behave?
 - 2.2.1. Tropical cyclones: seasonal appearance
 - 2.2.2. Extratropical cyclones: continuous weather makers
 - 2.2.3. Tornadoes: short-lived but deadly
 - 2.3. Disasters caused by the whirls
 - 2.3.1. Tropical cyclones: wind, surf, rain
 - 2.3.2. Extratropical cyclones: liquid and solid precipitation, gusts, floods
 - 2.3.3. Tornadoes: wind, "exploded" houses
 - 2.4. Forecasts of atmospheric circulation systems
- 3. What should we expect?

Natural Hazards Caused by Solid Precipitation

Vladimir M. Kotlyakov, Institute of Geography, Russian Academy of Sciences, Moscow, Russia

- 1. What is solid precipitation?
- 2. Rime and Glaze
- 3. Hail
 - 3.1. Conditions and mechanism of hail generation
 - 3.2. Hail protection
- 4. Snowstorms and snowdrifts
 - 4.1. Mechanics of snow drifting
 - 4.2. Snow drifts

Classification of Floods

A.F. Mandych, Department of Physical Geography and Land-use, Institute of Geography, Moscow, Russia

- 1. Introduction
- 2. Factors and Conditions of Flood Generation
- 3. River Floods
 - 3.1. Long Duration Floods of Melt Water
 - 3.2. Short Duration Floods of Melted Water
 - 3.3. Ice Gorge Floods
 - 3.4. Ice Jam Floods
 - 3.5. Long Duration Floods of Rainwater
 - 3.6. Floods of Monsoon Rains
 - 3.7. Flash Floods
 - 3.8. Dam Break Floods
 - 3.9. Backwater Floods
 - 3.10. Mudflows
 - 3.11. Floods Caused by Icing
- 4. Inundation of Seacoasts
 - 4.1. Tides
 - 4.2. Storm Surges

v

19

40

- 4.3. Tsunami
- 5. Floods of Inland Seas and Lakes
 - 5.1. Tides
 - 5.2. Wind Surges
 - 5.3. Seasonal Flooding
 - 5.4. Seiches
- 6. Human Impact
 - 6.1. Flooding of Urban Areas
 - 6.2. Prolonged River Floods
 - 6.3. Flash Floods
 - 6.4. Flooding due to Groundwater Rise
 - 6.5. Flooding by Irrigation
 - 6.6. Tsunami
- 7. Conclusion

Floods and Soil Erosion

A.F. Mandych, Department of Physical Geography and Land Use, Institute of Geography, Moscow, Russia

- 1. Introduction
- 2. Water Erosion
- 3. Watershed Erosion
 - 3.1. Uniform Slope Site Erosion
 - 3.2. Slope Erosion
 - 3.3. Gully Erosion
- 4. Fluvial Systems
 - 4.1. Factors of Fluvial System Origination and Development
 - 4.2. Processes in River Channels
 - 4.3. Floods, Erosion, and Sediment Load
 - 4.4. Extreme Flood Erosion

Flood Control for Specific Types of Floods

A.F. Mandych, Department of Physical Geography and Land Use, Institute of Geography, Moscow, Russia

- 1. Introduction
- 2. Flood Effects
- 3. Flood Damage
- 4. Flood Control
 - 4.1. Control of Flood Formation
 - 4.2. Damage Reduction
 - 4.2.1. Direct Protection
 - 4.2.2. Pre-Flood Measures
 - 4.2.3. Structural Changes
 - 4.3. Effect Mitigation
- 5. Floods of Recent Times: Is Flood Protection Effective?
- 6. Conclusion

Forest Fires and Dynamics of Forest Cover

Arkady A. Tishkov, Institute of Geography, Russian Academia of Sciences, Moscow, Russia

130

111

- 1. Introduction
- 2. Forest and fire
- 3. Global and national statistics of forest fires

- 4. The fire rotation in forests
- 5. Fire as instrument of forest ecosystem management
- 6. What is the impact of fire on forests?
- 7. Pyrogenic successions of forest vegetation
- 8. Forest fires in boreal forests of North Eurasia
- 9. The Forest fires and carbon emission
- 10. Anti-fire forest protection measures

Fires in Steppes and Savannas

Arkady A. Tishkov, Institute of geography, Russian Academia of Sciences, Moscow, Russia

- 1. Introduction
- 2. Grasslands and fire
- 3. Fire as a factor of deforestation of grassland ecosystems
- 4. Fire as an instrument of regulation of grassland ecosystems dynamics
- 5. Pyrogenic fluctuations and succession in grassland ecosystems
- 6. Geographical aspects of fires in grasslands
 - 6.1. Velds (South Africa).
 - 6.2. Eucalyptus savannas (Australia)
 - 6.3. Brazilian cerrado. (South America)
 - 6.4. African tropical savannas
 - 6.5. The Eurasian steppes
 - 6.6. Phryganic maquis and other Mediterranean grassland and shrub ecosystems
 - 6.7. Chaparral with fragments of prairies (California, USA).
- 7. Fire and carbon emissions

Sub-Surface Peat Fires

Arkady A. Tishkov, Institute of geography, Russian Academia of Sciences, Moscow, Russia

- 1. Introduction
- 2. Surface fires as a factor of spread of peat fires
- 3. The causes of peat fires
- 4. What types of bogs are susceptible to underground fires?
- 5. The peat fires on tropical wetlands
- 6. Underground fires and carbon emissions

Mountain Disasters

Vladimir Mikhailovich Kotlyakov, Institute of Geography, Russian Academy of Sciences (RAS), Russia

- 1. Introduction
- 2. Rock Falls and Landslides
- 3. Mud Flows
- 4. Snow avalanches
- 5. Glacier Surges
- 6. Conclusion

Lands Slides and Rock Falls

Vladimir M. Kotlyakov, Institute of Geography, Russian Academy of Sciences, Moscow, Russia

197

- 1. Slopes and slope processes
- 2. Rock stresses and deformations on slopes
- 3. Instability of slopes and generation of landslides
- 4. Types of landslides
- 5. Occurrence of landslides

170

159

6. Landslide control

Mudflows

Vladimir M. Kotlyakov, Institute of Geography, Russian Academy of Sciences, Moscow, Russia

- 1. Conditions of mudflow formation
- 2. Mechanism of mudflow formation
- 3. Types of mudflow phenomena
- 4. Mudflow basins
- 5. Mudflow motion
- 6. Danger of mudflows for a territory. Prediction of mudflows.
- 7. Mudflow control

Snow Avalanches

Vladimir M. Kotlyakov, Institute of Geography, Russian Academy of Sciences, Moscow, Russia

- Formation of avalanches 1.
 - 1.1. Stability of snow on a slope
 - 1.2. Factors of the avalanche formations
- 2. Classification of avalanches
- 3. Avalanche movement
- 4. A shock force of avalanche
- 5. Avalanche hazard for a territory
- 6. Struggle against avalanches
 - 6.1. Artificial avalanche triggering
 - 6.2. Fixing of snow on slopes
 - 6.3. Anti-avalanche constructions
- 7. Prediction of avalanches

Ice Slides and Glacier Surges

Vladimir M. Kotlyakov, Institute of Geography, Russian Academy of Sciences, Moscow, Russia

- 1. Particular class of glaciers 2.
 - Spreading of surging glaciers
 - 2.1. North America
 - 2.2. Arctic regions
 - 2.3. Alps
 - 2.4. Karakoram
 - 2.5. The Pamirs
- 3. Causes of glacier surges
- 4. Dangerous consequences of glacier surges

Index

About EOLSS

270

289

297

243