
CONTENTS

CULTIVATED PLANTS, PRIMARILY AS FOOD SOURCES

Cultivated Plants, Primarily as Food Sources -Volume 1 No. of Pages: 372 ISBN: 978-1-84826-100-6 (eBook) ISBN: 978-1-84826-550-9 (Print Volume)

Cultivated Plants, Primarily as Food Sources -Volume 2 No. of Pages: 440 ISBN: 978-1-84826-101-3 (eBook) ISBN: 978-1-84826-551-6 (Print Volume)

For more information of e-book and Print Volume(s) order, please **click here**

Or contact : eolssunesco@gmail.com

CONTENTS

VOLUME I

Cultivated Plants, Primarily as Food Sources

György Füleky, Szent István University, Gödöllö, Hungary

- 1. Introduction
 - 1.1. Cultivation
 - 1.2. Which Crops Feed the World?
 - 1.3. Protein Problem
- 2. History of Crop Production
 - 2.1. Gathering People
 - 2.2. What Do Gatherers Eat?
 - 2.2.1. Grass Seeds (Potential Cereals)
 - 2.2.2. Legumes
 - 2.2.3. Root and Tuber Plants
 - 2.2.4. Oil Plants
 - 2.2.5. Fruits and Nuts
 - 2.2.6. Vegetables and Spices
 - 2.3. Types of Agriculture
 - 2.4. Diffusion of Crops
- 3. Land Used for Agriculture
 - 3.1. Land Use Categories
 - 3.2. Agricultural Land Use
 - 3.3. Reserve of Productive Agricultural Land
- 4. Cropping Systems
 - 4.1. Cropping Systems
 - 4.1.1. Shifting Cultivation
 - 4.1.2. Wet-Rice Cultivation
 - 4.1.3. Agroforestry
 - 4.1.4. Grasslands
 - 4.1.5. Mixed Farming
 - 4.1.6. Plantation Crops
 - 4.1.7. Large-Scale Grain Production
 - 4.2. Integrated Agriculture
 - 4.3. Modern Agricultural Revolution
 - 4.4. Major Agricultural Systems
- 5. Future Trends
 - 5.1. Traditional Plants in Future
 - 5.1.1. Cereals and Pseudocereals
 - 5.1.2. Legumes
 - 5.1.3. Edible and Industrial Oils
 - 5.1.4. Non-Wood Fiber
 - 5.1.5. Industrial Crops
 - 5.1.6. Energy Crops
 - 5.1.7. Fruits and Nuts
 - 5.1.8. Vegetables
 - 5.1.9. Aromatics, Culinary Herbs, and Medicinals
 - 5.1.10. Ornamentals
 - 5.2. Human Health and Plant Food Nutrition
 - 5.2.1. Plant Food Composition
 - 5.2.2. Protein-Energy Malnutrition
 - 5.2.3. Nutrition Security
 - 5.3. Plant Products of Biotechnology
 - 5.3.1. Conventionally Bred Crops Versus Genetically Modified (GM) Crop
 - 5.3.2. Possible Future Developments

5.3.3. Potential Risks

Rice

42

Krisztina R. Végh, Research Institute for Soil Science and Agricultural Chemistry of Hungarian Academy of Sciences, P. O. Box 35, H-1525 Budapest, Hungary

- 1. Rice in the world living with rice
- 2. Short history
- 3. Growth, morphology and chemistry of the rice plant
 - 3.1. Morphology of rice plant
 - 3.1.1. Root system
 - 3.1.2. Aboveground parts
 - 3.1.3. Rice Grain
- 4. Rice ecosystems
 - 4.1. Rainfed lowland ecosystems
 - 4.2. Upland rice ecosystems
 - 4.3. Flood-prone rice ecosystems
 - 4.4. Irrigated rice ecosystems
- 5. Main constrains to production and environmental consequences
 - 5.1. Water: a factor limiting yield
 - 5.1.1. Solutions for water problems
 - 5.2. Nutrient management: principles and practices
 - 5.2.1. Nitrogen management in rice ecosystems
 - 5.2.2. Management of P and K in rice fields
 - 5.2.3. Silicon management for sustainable rice production
 - 5.3. Weeds, pests and diseases
 - Development of plant genotypes for stabilized high yields for each ecosystem.
 - 6.1. New rice varieties planned
 - 6.2. Rice genome has been mapped
 - 6.3. Genetic engineering in rice improvement
 - 6.4. Hybrid rice
- 7. Eating rice

6.

Sorghum and Millets

Irén Léder, Department of Technology, Central Food Research Institute, Hungary

66

- 1. Introduction
- 2. Sorghum (Sorghum bicolor/L./Moench)
 - 2.1. History, Taxonomy and Distribution
 - 2.1.1. History
 - 2.1.2. Taxonomy
 - 2.1.3. Distribution

2.2. Chemical Composition (Carbohydrates, Proteins, Lipids, Vitamins and Minerals)

- 2.2.1. Carbohydrates
- 2.2.2. Proteins
- 2.2.3. Lipids
- 2.2.4. Vitamins and Minerals
- 2.3. Anti-nutrients in Sorghum Grain (Tannins, Phytic Acid, Cyanogenic Glycosides)2.3.1. Tannins (condensed polyphenols)
 - 2.3.2. Phytic Acid
 - 2.3.3. Cyanogenic Glycosides
- 2.4. Use
- 2.5. Agronomy, yield and production
 - 2.5.1. Yield and production
 - 2.5.2. Agronomy

3. Millets

- 3.1. History, Taxonomy, Distribution
 - 3.1.1. History
 - 3.1.2. Taxonomy
 - 3.1.3. Distribution
- 3.2. Chemical composition (Carbohydrates, Proteins, Lipid, Vitamins and Minerals)
 - 3.2.1. Carbohydrates
 - 3.2.2. Proteins
 - 3.2.3. Lipid
 - 3.2.4. Vitamins and Minerals
- 3.3. Anti-nutrients in millets
- 3.4. Use
- 3.5. Agronomy, yield and production

Buckwheat, Amaranth and other Pseudocereal Plants

Irén Léder, Department of Technology, Central Food Research Institute, Hungary

84

- 1. Introduction
- 2. Buckwheat
 - 2.1. History and distribution
 - 2.1.1. History
 - 2.1.2. Distribution
 - 2.2. Taxonomy, Morphology and Ecology
 - 2.2.1. Taxonomy, Morphology
 - 2.2.2. Ecology
 - 2.3. Biochemical composition
 - 2.3.1. Protein, Mineral, Vitamin, Fat, and Carbohydrate content
 - 2.3.2. Amino acid composition
 - 2.3.3. Other compounds
 - 2.4. Use
 - 2.5. Agronomy, yield and production
- 3. Amaranth (Amaranthus species)
 - 3.1. History and Use
 - 3.1.1. History
 - 3.1.2. Use
 - 3.2. Taxonomy, Ecology, Morphology
 - 3.2.1. Taxonomy
 - 3.2.2. Ecology
 - 3.2.3. Morphology
 - 3.3. Biochemical composition
 - 3.3.1. Proteins and amino acids
 - 3.3.2. Carbohydrates and Fat
 - 3.3.3. Minerals, Vitamins
 - 3.3.4. Anti-nutritional factors and Nutritive value
 - 3.3.5. Agronomy, yield and production
 - 3.3.6. Future prospects
- 4. Quinoa (Chenopodium quinoa)

Nutritional Aspects of Legumes

Ildikó Schuster-Gajzágó, Department of Technology, Central Food Research Institute, Hungary

- 1. Introduction
- 2. History, taxonomy and distribution
 - 2.1. History
 - 2.2. Taxonomy
 - 2.3. Distribution

- 3. Chemical composition
 - 3.1. Legume seeds as a source of protein
 - 3.2. Legume seeds as a source of carbohydrate and dietary fibre
 - 3.3. Fat content of Legume seeds
 - 3.4. Legume seeds as a source of minor components with major health effects
- 4. Food, feed and non-food uses of legumes
 - 4.1. Food use of legumes
 - 4.2. Feed uses of legumes
 - 4.3. Non-food uses of legumes
- 5. Agronomy, yield and production

Peas and Lentils

Ildikó Schuster-Gajzágó, Department of Technology, Central Food Research Institute, Hungary

- 1. Pea (Pisum sativum L.)
 - 1.1. Introduction
 - 1.2. History, Taxonomy and Distribution
 - 1.3. Chemical composition
 - 1.4. Use
 - 1.5. Agronomy, yield and production
- 2. Lentil (Lens culinaris Medicus)
 - 2.1. Introduction
 - 2.2. History, Taxonomy and Distribution
 - 2.3. Chemical composition
 - 2.4. Use
 - 2.5. Agronomy, yield and production

Beans

Ildikó Schuster-Gajzágó, Department of Technology, Central Food Research Institute, Hungary

- 1. Faba bean (Vicia faba L.)
 - 1.1. Introduction
 - 1.2. History, Taxonomy and Distribution
 - 1.3. Chemical composition
 - 1.4. Uses
 - 1.5. Agronomy, yield and production
- 2. Dry beans (Phaseolus vulgaris L.)
 - 2.1. Introduction
 - 2.2. History, Taxonomy and Distribution
 - 2.3. Chemical composition
 - 2.4. Use
 - 2.5. Agronomy, yield and production

Lupin and Chickpea

Ildikó Schuster-Gajzágó, Department of Technology, Central Food Research Institute, Hungary

- 1. Lupin (Lupinus albus, L. luteus, L. angustifolius)
 - 1.1. Introduction
 - 1.2. History, Taxonomy and Distribution
 - 1.3. Chemical composition
 - 1.4. Use
 - 1.5. Agronomy, yield and production
- 2. Chickpea (Cicer arietinum L.)
 - 2.1. Introduction
 - 2.2. History, Taxonomy and Distribution

135

125

- 2.3. Chemical composition
- 2.4. Use
- 2.5. Agronomy, yield and production

Vegetables and Plants for Edible Starch, Oil, Sugar and Beverage Production

Krisztina R. Végh, Research Institute for Soil Science and Agricultural Chemistry of Hungarian Academy of Sciences, 1022 Budapest, Hungary

- 1. Concept of food security
 - 1.1. Food supply
 - 1.2. Malnutrition
 - 1.2.1. Under-nourishment
 - 1.2.2. Over-nourishment
 - 1.2.3. Micronutrient deficiencies
- 2. Our most important nutrients
 - 2.1. Carbohydrates
 - 2.2. Proteins
 - 2.2.1. Cereal proteins
 - 2.2.2. Pulses a key source of protein
 - 2.3. Fats
 - 2.4. Micronutrients
- 3. Food quality and safety
- 4. Home-gardens for household food security
 - 4.1. Main functions and features of home-gardens
 - 4.2. Technologies improving the efficacy of home gardening
 - 4.3. Home gardens in Asia and Africa
- 5. Growing cities increasing demand for safe food
 - 5.1. Food security and safety in cities
 - 5.2. Urban and peri-urban agriculture
- 6. Water use key function in securing food
 - 6.1. Irrigation and environment
 - 6.2. Water-saving agriculture

Vegetables: Root Crops

179 C. J. H. S.

144

Krisztina R. Végh, Research Institute for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences, Budapest, Hungary

- 1. Vegetables as a part of the diet
 - 1.1. Role in nutrition
 - 1.2. Vitamins in vegetables
 - 1.3. Minerals and their bioavailability
 - 1.4. Dietary fibre
 - 1.5. Taste of vegetables
 - 1.6. Quality concerns
- 2. Root vegetables
 - 2.1. Carrots
 - 2.1.1. Production, role in diet
 - 2.1.2. Cultivation and constraints
 - 2.2. Parsley and parsnip
 - 2.2.1. History and role in the diet
 - 2.2.2. Cultivation and constraints
 - 2.3. Celery and Celeriac
 - 2.3.1. History and role in the diet
 - 2.3.2. Cultivation and constraints
 - 2.4. Salsify
 - 2.5. Beets: redbeet and yellow beet

- 2.6. Turnips and Swedes
- 2.7. Radishes
 - 2.7.1. Origin and role in diet
 - 2.7.2. Cultivation and constraints
- 2.8. Secondary root crops
- 3. Bulb alliums main characteristics
 - 3.1. Onion
 - 3.2. Garlic
 - 3.3. Leeks and shallots
- 4. Leaf vegetables
 - 4.1. Salad greens
 - 4.1.1. Lettuces
 - 4.1.2. Chicories and endives
 - 4.2. Leafy vegetables for cooking
 - 4.2.1. Spinach
 - 4.2.2. Chard, New Zealand spinach, kang kong and others
 - 4.2.3. Sorrel and rhubarb and asparagus
- 5. Cole crops, Brassicas

Vegetables II (Others)

Krisztina R. Végh, Research Institute for Soil Science and Agricultural Chemistry of Hungarian Academy of Sciences, Budapest, Hungary

- 1. Introduction
- 2. Tomato
 - 2.1. Description of tomato
 - 2.2. Cultivation and constraints
- 3. Green pepper: Capsicum annuum
 - 3.1. Description of green pepper
 - 3.2. Nutrients in green pepper
 - 3.3. Cultivation of green pepper
- 4. Eggplant (Solanum melongena)
 - 4.1. Description
 - 4.2. Cultivation of eggplant
- 5. The gourd family: Cucurbit crops
 - 5.1. Watermelon
 - 5.2. Cucumber
 - 5.3. Melon
 - 5.4. Gourds, squashes
 - 5.5. Cultivation of melons, cucumber and squash
- 6. Vegetable legumes
 - 6.1. Pea
 - 6.1.1. Nutrients in green peas
 - 6.1.2. Quality vs. processing
 - 6.1.3. Cultivation of green peas
 - 6.2. Green beans
 - 6.2.1. Nutrients in green bean
 - 6.2.2. Cultivation
 - 6.3. Faba bean
 - 6.3.1. Nutrients in Faba bean
 - 6.3.2. Cultivation of Faba bean
 - 6.4. Soybean
 - 6.4.1. Soybean as vegetable
 - 6.4.2. Soybean cultivation and constraints
 - 6.5. Pigeon pea
 - 6.5.1. Nutrients in pigeon pea
 - 6.5.2. Cultivation of pigeon pea

- 6.6. Cowpea
 - 6.6.1. Role of cowpea in nutrition
 - 6.6.2. Cultivation and constraints
- 6.7. Mung bean
 - 6.7.1. Consumption of mung beans
 - 6.7.2. Cultivation of mung beans
- 6.8. Secondary significant legume crops

Starch Bearing Crops as Food Sources

253

Krisztina. R. Végh, Department of Plant Nutrition, Research Institute for Soil Science and Agricultural Chemistry of Hungarian Academy of Sciences, P.O. Box 35. H-1525 Budapest, Hungary

- 1. Starch bearing plants as the source of dietary energy
 - 1.1. Starch constituents
 - 1.2. Gelatinisation of starch
- 2. Starch in cereals
 - 2.1. Starch in wheat
 - 2.2. Starch in maize
 - 2.3. Starch in rice
 - 2.4. Starch in sorghum
 - 2.5. Starch in millets
- 3. Root and tuber crops
 - 3.1. Potato: production and use
 - 3.1.1. History of potato cultivation
 - 3.1.2. Growth and morphology of potato plant
 - 3.1.3. Food constituents in tubers
 - 3.2. Cassava: production and use
 - 3.2.1. History of cassava cultivation
 - 3.2.2. Growth and morphology of cassava plant
 - 3.2.3. Food constituents in cassava
 - 3.2.4. Cultivation, its constraints and consumption of cassava
 - 3.3. Sweet potato: production and use
 - 3.3.1. History of sweet potato cultivation
 - 3.3.2. Growth and morphology of sweet potato plant
 - 3.3.3. Food constituents in sweet potato
 - 3.3.4. Cultivation, constraints and consumption of sweet potato
 - 3.4. Yams and taros: production and use
 - 3.4.1. History and description of yams
 - 3.4.2. Consumption of yams
 - 3.4.3. History, description and consumption of taros
- 4. Other starchy plants

Protein Bearing Crops

M. Hajos-Novak, Department of Genetics and Plant Breeding, Faculty of Agricultural and Environmental Sciences, Szent István University, Gödöllő, Hungary

- 1. Protein bearing plants and the world's food supply
 - 1.1. Proteins and nucleic acids
 - 1.2. Structure and properties of proteins
- 2. Protein sources
 - 2.1. Protein in wheat
 - 2.2. Protein in maize
 - 2.3. Protein in rice
 - 2.4. Protein in barley
 - 2.5. Protein in oat
 - 2.6. Protein in legumes with special reference to the soybean

2.7. Protein in forages

Index

About EOLSS

VOLUME II

Plants as Sources of Oil

Katalin Perédi Vásárhelyi, Technology Department, Central Food Research Institute, Budapest, Hungary József Perédi, Department of Grain and Industrial Plant Technology, Szent István University, Budapest, Hungary

- 1. Introduction
- 2. Soybean
 - 2.1. Biology, morphology
 - 2.1.1. Climate- and soil demand
 - 2.1.2. Agrotechnics
 - 2.1.3. Varieties
 - 2.2. Characteristics of the seed
 - 2.2.1. Major components
 - 2.2.2. Minor components
 - 2.3. Characteristics of the oil
 - 2.3.1. Major components
 - 2.3.2. Minor components
 - 2.4. Characteristics of the meal
 - 2.5. Utilization of the products
- 3. Oil Palm Fruit and Kernel
 - 3.1. Biology, morphology
 - 3.1.1. Climate- and soil demand
 - 3.1.2. Agrotechnics
 - 3.1.3. Varieties
 - 3.2. Palm fruit
 - 3.2.1. Characteristics of the fruit
 - 3.2.2. Characteristics of palm oil
 - 3.2.2.1. Major components
 - 3.2.2.2. Minor components
 - 3.2.3. Utilization of the oil
 - 3.2.4. Utilization of by-products
 - 3.3. Palm kernel
 - 3.3.1. Characteristics of the kernel
 - 3.3.2. Characteristics of the oil
 - 3.3.2.1. Major components
 - 3.3.2.2. Minor components
 - 3.3.3. Characteristics of the meal
 - 3.3.4. Utilization of the products
- 4. Rape
 - 4.1. Biology, morphology
 - 4.1.1. Climate- and soil demand
 - 4.1.2. Agrotechnics
 - 4.1.3. Varieties
 - 4.2. Characteristics of the seed
 - 4.2.1. Major components
 - 4.2.2. Minor components
 - 4.3. Characteristics of the oil

301 309

1

viii

- 4.3.1. Major components
- 4.3.2. Minor components
- 4.4. Characteristics of the meal
- 4.5. Utilization of the products
- 5. Sunflower
 - 5.1. Biology, morphology
 - 5.1.1. Climate- and soil demand
 - 5.1.2. Agrotechnics
 - 5.1.3. Varieties
 - 5.2. Characteristics of the seeds 5.2.1. Major components
 - 5.2.2. Minor components
 - 5.3. Characteristics of the oil
 - 5.3.1. Major components
 - 5.3.2. Minor components
 - 5.4. Characteristics of the meal
 - 5.5. Utilization of products
- 6. Peanut
 - 6.1. Biology, morphology
 - 6.1.1. Climate- and soil demand
 - 6.1.2. Agrotechnics
 - 6.1.3. Varieties
 - 6.2. Characteristics of seeds
 - 6.2.1. Major and minor components
 - 6.3. Characteristics of the oil
 - 6.3.1. Major components
 - 6.3.2. Minor components
 - 6.4. Characteristics of the meal
 - 6.5. Utilization of products
- 7. Olive
 - 7.1. Biology, morphology
 - 7.1.1. Climate- and soil demand
 - 7.1.2. Agrotechnics
 - 7.1.3. Varieties
 - 7.2. Characteristics of fruits
 - 7.2.1. Major components
 - 7.2.2. Minor components
 - 7.3. Characteristics of the oil
 - 7.3.1. Major components
 - 7.3.2. Minor components
 - 7.4. Utilization of products
- 8. Corn
 - 8.1. Biology, morphology
 - 8.2. Constituents and main components of the grain
 - 8.3. Methods of degermination
 - 8.4. Characteristics of the oil
 - 8.4.1. Major components
 - 8.4.2. Minor components
 - 8.5. Characteristics of the meal
 - 8.6. Utilization of products
- 9. Flax
 - 9.1. Biology, morphology
 - 9.1.1. Climate- and soil demand
 - 9.1.2. Agrotechnics
 - 9.1.3. Varieties
 - 9.2. Characteristics of seeds
 - 9.2.1. Major and minor components
 - 9.3. Characteristics of the oil

- 9.3.1. Major components
- 9.3.2. Minor components
- 9.4. Characteristics of the meal
- 9.5. Utilization of products
- 10. Castor plant
 - 10.1. Biology, morphology
 - 10.1.1. Climate- and soil demand
 - 10.1.2. Agrotechnics
 - 10.1.3. Varieties
 - 10.2. Characteristics of the seed
 - 10.2.1. Major and minor components
 - 10.3. Characteristics of the oil
 - 10.3.1. Major components
 - 10.3.2. Minor components
 - 10.4. Characteristics of the meal
 - 10.5. Utilization of products
- 11. Pumpkin
 - 11.1. Biology, morphology
 - 11.1.1. Climate- and soil demand
 - 11.1.2. Agrotechnics
 - 11.1.3. Varieties
 - 11.2. Characteristics of the fruit
 - 11.3. Characteristics of the seed
 - 11.3.1. Macro and micro components
 - 11.4. Characteristics of the oil
 - 11.4.1. Major components
 - 11.4.2. Minor components
 - 11.5. Characteristics of the cake
 - 11.6. Utilization of products

Sugar Bearing Crops

75

M. Hajós-Novák, Department of Genetics and Plant Breeding, Faculty of Agricultural and Environmental Sciences, Szent István University, Gödöllő, Hungary

- 1. The present status of carbohydrate consumption
 - 1.1. The role of carbohydrates in nutrition and feed
 - 1.2. Definition and classification of carbohydrates
 - 1.3. Properties and derivatives of sugars
- 2. Sugar crops
 - 2.1. Sugar Beet
 - 2.1.1. Origin and history
 - 2.1.2. The sugar beet plant
 - 2.1.3. Cultivation and uses
 - 2.2. Sugar Cane
 - 2.2.1. Origin and history
 - 2.2.2. The sugar cane plant
 - 2.2.3. Culture and uses
 - 2.3. Sweet Sorghum
 - 2.3.1. Cultivation and uses
 - 2.4. Jerusalem Artichoke
- 3. Sugar crops as source of ethyl alcohol and fuel

Plants Used for the Production of Beverages

F. G. Pandi, Department of Industrial Development, Central Food Research Institute, Hungary

1. Introduction

- The importance of spices and herbs in the production of beverages 2. 3
 - Plants used for the production of beverages
 - 3.1. Allspice (Pimenta officinalis)
 - 3.2. Anise (Pimpinella anisum)
 - 3.3. Cassia (Cinnamomum cassia)
 - 3.4. Cinnamon (Cinnamonum sp.)
 - 3.5. Cloves (Eugenia caryophyllata)
 - 3.6. Coriander (Coriandrum sativum)
 - 3.7. Cumin (Cuminum cyminum)
 - 3.8. Ginger (Zingiber officinale)
 - 3.9. Hops (Humulus lupulus)
 - 3.10. Juniper (Juniperus communis and other species)
 - 3.11. Mint (Mentha sp.)
 - 3.12. Thyme (Thymus spp.)
 - 3.13. Vanilla (Vanilla planifolia)

Plants Used for the Production of Stimulants

Jenő Bernáth, BKA University, Department of Medicinal and Aromatic Plants, Budapest, Hungary

- 1. Introduction
- 2. Species used for stimulation
- 3. Characterization of the species
 - 3.1. Tea
 - 3.2. Coffee
 - 3.3. Kola
 - 3.4. Coca
 - 3.5. Maté
 - 3.6. Guarana
 - 3.7. Yoko
 - 3.8. Cacao

Spices

Éva Németh, BKA University, Department of Medicinal and Aromatic Plants, Budapest, Hungary

- 1. Introduction
- 2. Spices of the temperate zone
 - 2.1. Basil, Ocimum basilicum L. (Lamiaceae). (See Figure 1).
 - 2.2. Caraway Carum carvi L. (Apiaceae)
 - 2.3. Dill, Anethum graveolens L. (Apiaceae)
 - 2.4. Mustard, Sinapis alba and Brassica species (Brassicaceae)
 - 2.5. Oregano, Origanum vulgare L. (Lamiaceae)
 - 2.6. Sweet marjoram, Majorana hortensis Mönch. (Lamiaceae)
- Spices of the tropics 3.
 - 3.1. Cinnamon, Cinnamomum zeylanicum Nees, syn. C. verum J.S.Presl. (Lauraceae)
 - 3.2. Clove, Syzyngium aromaticum L syn. Eugenia caryophyllata Thunb. (Myrtaceae)
 - 3.3. Ginger, Zingiber officinale Roscoe (Zingiberaceae)
 - 3.4. Pepper, Piper nigrum L. (Piperaceae)

Fruit and Nuts

Béla Berényi, Szent István University, Gödöllő, Hungary

- 1. Introduction Classification of fruits according to the horticultural scientist 2.
- How botanists classify fruits 3.
- How botanists define nuts 4
- ©Encyclopedia of Life Support Systems (EOLSS)

145

108

Fruit in Northern Latitudes

Béla Berényi, Szent István University, Gödöllő, Hungary

- 1. Apples
 - 1.1. History
 - 1.2. Distribution of different varieties of apples
 - 1.3. Description of varieties
 - 1.4. Popular varieties of apple1.5. Rising apples and one of important disease
 - 1.6. Harvesting and processing
- 2. Pear
 - 2.1. History
 - 2.2. Methods of cultivation
 - 2.3. Popular varieties of pear
- 3. Plum
 - 3.1. Classification of plums:
 - 3.2. Methods of cultivation
- 4. Blackberry
 - 4.1. Methods of cultivation
- 5. Blueberry
- 6. Cranberry
 - 6.1. Methods of cultivation
- 7. Currants /Black and Red/
- 8. Gooseberry
- 9. Raspberry
 - 9.1. Methods of cultivation

Béla Berényi, Szent István University Gödöllő, Hungary

- 1. Citrus fruit and types
 - 1.1. Relation to soils
 - 1.2. Methods of cultivation
 - 1.3. Fertilizing
 - 1.4. Irrigation
 - 1.5. Cultivated citrus
- 2. Date palm
- 3. Olives
- 4. Pomegranate
 - 4.1. Rate, depth, and methods of planting
 - 4.2. Irrigation
 - 4.3. Harvesting
- 5. Grapes
 - 5.1. Harvesting
- 6. Fig
- 7. Kiwi or Chinese gooseberry
- 8. Persimmon
- 9. Stone fruits: peach nectarine, apricot and plum
 - 9.1. Apricot
 - 9.2. Plum

Temperate Fruits

Béla Berényi, Szent István University Gödöllő, Hungary

- 1. Peach
- 2. Apricot

193

xii

©Encyclopedia of Life Support Systems (EOLSS)

170

- 3. Cherry
- 3.1. Pests and Diseases
- 4. Strawberry

Béla Berényi, Szent István University Gödöllő, Hungary

- 1. Banana
 - 1.1. Varieties
 - 1.2. Ecological characteristics
 - 1.3. Moisture
 - 1.4. Light and soil
 - 1.5. Cultivation techniques
 - 1.6. Preparation of soil
 - 1.7. Preparation for planting
 - 1.8. Rate, depth, and methods of planting
 - 1.9. Time of planting
 - 1.10. Fertilizing
 - 1.11. Irrigation
 - 1.12. Weed control
 - 1.13. Harvesting
- 2. Mango
 - 2.1. Ecological characteristics
 - 2.2. Temperature
 - 2.3. Moisture
 - 2.4. Soils
 - 2.5. Methods of cultivation
 - 2.6. Rate, depth, and methods of planting
 - 2.7. Irrigation
 - 2.8. Harvesting
- 3. Pineapple
 - 3.1. Ecological characteristics and temperature
 - 3.2. Moisture
 - 3.3. Soils
 - 3.4. Methods of cultivation: seedbed preparation
 - 3.5. Mulching
 - 3.6. Planting material
 - 3.7. Rate, depth, and methods of Planting
 - 3.8. Fertilizing
 - 3.9. Weed control
 - 3.10. Harvesting
- 4. Papaya
 - 4.1. Ecological characteristics: temperature
 - 4.2. Moisture
 - 4.3. Soil
 - 4.4. Methods of cultivation: rate, depth, and methods of planting
 - 4.5. Fertilizing
 - 4.6. Harvesting and storage
- 5. Avocado pear
- 6. Guava
 - 6.1. Ecological characteristics
 - 6.2. Soils
 - 6.3. Methods of cultivation: rate, depth, and methods of planting
 - 6.4. Fertilizing
 - 6.5. Irrigation
 - 6.6. Harvesting
- 7. Coconut

xiii

- 7.1. Breeding and selection
- 7.2. Ecological characteristics: temperature
- 7.3. Moisture
- 7.4. Soils
- 7.5. Methods of cultivation: propagation methods
- 7.6. Fertilizing
- 7.7. Rate, depth, and methods of planting
- 7.8. Weed control
- 7.9. Harvesting.
- 8. Passion fruit
- 9. Litchi and longan
- 10. Soursop and other annonas

Nut Plants

Béla Berényi, Szent István University Gödöllő, Hungary

- 1. Cashew nut
 - 1.1. Ecological characteristics
 - 1.2. Temperature
 - 1.3. Moisture
 - 1.4. Methods of cultivation
 - 1.5. Rate, depth, and methods of planting
 - 1.6. Fertilizing
 - 1.7. Harvesting and storage
- 2. Almond
- 3. Macadamia nut
- 4. Pistachio nut
- 5. Hickory nut
- 6. Pecan
- 7. Chestnut
- 8. Walnut

Ornamental Plants

Gabor Schmidt, Corvinus University of Budapest, Hungary

1. Ornamental plants

- 1.1. Classification of ornamental plants
- 1.2. Floriculture around the World
- 2. Introduction to selected flower crops
 - 2.1. Roses
 - 2.1.1. Breeding centers, varieties (cultivars)
 - 2.1.2. Growing roses for cut-flower production
 - 2.2. Chrysanthemums (Chrysanthemum grandiflorum hybrids, syn. Dendranthemum
 - 2.2.1. Regions of production
 - 2.2.2. Origin and breeding
 - 2.2.3. Environmental requirements
 - 2.2.4. The production of chrysanthemums
 - 2.2.5. Harvesting and post-harvest care
 - 2.3. Dianthus (carnations)
 - 2.3.1. Origin and breeding
 - 2.3.2. The production of carnations
 - 2.4. Gerberas
 - 2.4.1. Origin and breeding
 - 2.4.2. Environmental requirements
 - 2.4.3. Cultivation of cut gerberas
 - 2.5. Tulips

229

- 2.5.1. Classification of tulips
- 2.5.2. Forcing of tulips
- 2.6. Lilies (Lilium)
 - 2.6.1. The forcing of lilies
 - 2.6.2. The way of production
- 2.7. Bedding and balcony plants
 - 2.7.1. Production of bedding and balcony plants

Pharmaceutical Plants (Plants used in pharmaceutical preparations)

279

304

Jenő Bernáth, BKA University, Department of Medicinal an Aromatic Plants, Budapest, Hungary

- 1. Introduction
- 2. Species processed by pharmaceutical industry
- 3. Characterisation of the species of main importance
 - 3.1. Quinine
 - 3.2. Ergot
 - 3.3. Foxglove
 - 3.4. Pacific yew
 - 3.5. Opium poppy
 - 3.6. Periwinkle
 - 3.7. Thornapple and related species

Medicinal Plants

Éva Németh, BKA University, Department of Medicinal and Aromatic Plants, Budapest, Hungary

- 1. Introduction
- 2. Medicinal plants used against respiratory tract problems
 - 2.1. Cowslip. Primula veris Huds. (Primulaceae)
 - 2.2. Lime tree. Tilia spp. (Tiliaceae)
 - 2.3. Marshmallow. Althaea officinalis L. (Malvaceae)
- 3. Medicinal plants against digestive system problems
 - 3.1. German chamomile. Matricaria chamomilla L. or Chamomilla recutita Rausch.
 - 3.2. Senna. Cassia sp. (Caesalpiniaceae)
 - 3.3. Yellow gentian. Gentiana lutea L. (Gentianaceae)
- 4. Medicinal plants for problems of the cardiovascular system
 - 4.1. Borage. Borago officinalis L. (Boraginaceae)
 - 4.2. Ginkgo tree. Ginkgo biloba L. (Ginkgoaceae)
 - 4.3. Hawthorn. Crataegus species (Rosaceae)
- 5. Medicinal plants in nervous system disorders
 - 5.1. Ginseng. Panax and Eleuterococcus species (Araliaceae)
 - 5.2. St. John's Wort. Hypericum perforatum L. (Hypericaceae)
 - 5.3. Valerian. Valeriana officinalis L. (Valerianaceae)
- 6. Medicinal plants curing urinary tract diseases
 - 6.1. Bearberry. Arctostaphylos uva-ursi (L.) Spreng. (Ericaceae)
 - 6.2. Field horsetail. Equisetum arvense L. (Equisetaceae)
 - 6.3. Goldenrod. Solidago virgaurea L. (Asteraceae)

Aromatic Plants

Jenő Bernáth, BKA University, Department of Medicinal an Aromatic Plants, Budapest, Hungary

- 1. Introduction
- 2. Chemical structures and extraction of essential oils
- 3. Species of main importance used for production of essential oils
- 4. Essential oil producing species of main importance from the tropics 4.1. Lemongrass

- 4.2. Eucalyptus
- 4.3. Melaleuca
- 5. Essential oil producing species of main importance selected from the Mediterranean region
 - 5.1. Bitter orange
 - 5.2. Lavender
 - 5.3. Rose
- 6. Essential oil producing species of main importance from temperate regions
 - 6.1. Peppermint
 - 6.2. Lovage

Colouring (Dye) Plants

Éva Németh, BKA University, Department of Medicinal and Aromatic Plants, Budapest, Hungary

- Introduction 1.
- Alkanet 2.
- 3. Elder
- Greater nettle
 Hollyhock
- 6. Madder
- 7. Safflower
- 8. Saffron
- 9. Woad

Index

About EOLSS

377

369