CONTENTS

CIVIL ENGINEERING

Civil Engineering - Volume 1 No. of Pages: 420 **ISBN:** 978-1-905839-73-5 (eBook) **ISBN:** 978-1-84826-973-6 (Print Volume)

Civil Engineering - Volume 2 No. of Pages: 402 **ISBN:** 978-1-905839-74-2 (eBook) **ISBN:** 978-1-84826-974-3 (Print Volume)

For more information on e-book(s) and Print Volume(s) order, please **click here**

Or contact : eolssunesco@gmail.com

CONTENTS

VOLUME I

Civil Engineering Kiyoshi Horikawa, University of Tokyo, Japan and Saitama University, Japan

1. Introduction

- 2. Historical Background of Civil Engineering
 - 2.1. Engineering in General
 - 2.2. Civil Engineering as the Oldest Engineering Discipline
- 3. Functions of Civil Engineering
 - 3.1. Role of Civil Engineering
 - 3.2. The Civil Engineering Profession
 - 3.3. Branches of Civil Engineering
- 4. Social Development Of Civil Engineering
 - 4.1. Education Systems
 - 4.2. Licensing
 - 4.3. Civil Engineering Societies
- 5. Prospects for the Twenty-First Century
 - 5.1. Positive and Negative Legacies in the Twentieth Century
 - 5.2. Role of Civil Engineering in the Twenty-First Century
 - 5.2.1. Development of Better Balanced "Hard" and "Soft" Technologies
 - 5.2.2. Establishment of Suitable Maintenance Systems for Existing Structures and Facilities
 - 5.2.3. Efforts to Mitigate Damage Caused by Natural Disasters
 - 5.2.4. Minimization of Human Impacts on Natural Environment
 - 5.2.5. Effective Utilization of Advanced Technologies, such as Information Technology
 - 5.2.6. Global Environmental Problems

Fields within Civil Engineering - Ports and Canals as Waterborne Transport Facilities23Yoshimi Goda, Yokohama National University, Japan23

- 1. Introduction
- 2. Ports and Canals in the Ancient World
 - 2.1. Irrigation Canals and Rivers for Waterborne Transport
 - 2.2. Port Construction in the Ancient World
- 3. Ports and Canals in the Seventh to Fifteenth Centuries
 - 3.1. Grand Canal of China
 - 3.2. Early Canals in Europe
 - 3.3. Mediterranean and Hanseatic League Ports
- 4. Ports and Canals in the Sixteenth to Nineteenth Centuries
 - 4.1. Briare Canal and Midi Canal of France
 - 4.2. Canal Mania Age of England
 - 4.3. Development of Transoceanic Trade Ports
 - 4.4. Erie Canal of America
 - 4.5. Suez Canal
- 5. Ports and Canals in the Twentieth Century
 - 5.1. Panama Canal
 - 5.2. Port Development for Great Steamships
 - 5.3. Development of Ports for Containerships
- 6. Towards the Twenty First Century

Transportation Engineering

Izumi Okura, Yokohama National University, Japan Masao Kuwahara, The University of Tokyo, Japan

- Hirokazu Akahane, Chiba Institute of Technology, Japan Fumihiko Nakamura, Yokohama National University, Japan
- 1. Introduction
- 2. Traffic Flow Fundamentals
 - 2.1. Traffic Flow Characteristics and Theory
 - 2.1.1. Time-Space Diagram
 - 2.1.2. Flow-Density-Speed Relationship
 - 2.1.3. Queuing Theory
 - 2.1.4. Kinematic-Wave Theory
 - 2.1.5. Car-Following Theory
 - 2.1.6. Traffic Simulation
 - 2.2. Traffic Capacity
 - 2.2.1. Simple Section
 - 2.2.2. Merging, Diverging, Weaving Sections
 - 2.2.3. Intersections
 - 2.3. Sensing Technology and Surveillance
 - 2.3.1. Sensors
 - 2.3.2. Surveillance
- 3. Transportation Planning
 - 3.1. Data Collection
 - 3.1.1. OD Surveys and PT Surveys
 - 3.1.2. Advanced Survey Methods
 - 3.2. Demand Prediction
 - 3.2.1. Four-step Prediction Approach
 - 3.2.2. Discrete Choice Analysis
 - 3.3. Transportation Management
 - 3.3.1. District-wide Management
 - 3.3.2. Public Transportation Management
 - 3.3.3. Comprehensive Traffic Management
 - 3.3.4. Transportation System Management to Transportation Demand Management
 - 3.3.5. Advanced Ways for Management
- 4. Geometric Design of Highways
 - 4.1. Classification of Highways
 - 4.2. Cross-section of Highway
 - 4.3. Alignment of Highway and Sight Distance
 - 4.3.1. Horizontal Alignment
 - 4.3.2. Vertical Alignment
 - 4.3.3. Sight Distance
 - 4.3.4. Three Dimensional Alignment
 - 4.4. Intersections and Interchanges
 - 4.4.1. At-Grade Intersections
 - 4.4.2. Interchanges
- 5. Traffic Management
 - 5.1. Aims of Traffic Management
 - 5.2. Classification of Measures of Traffic Management
 - 5.3. Measures that Influence Places and Times of Generation of Traffic Demand
 - 5.4. Measures that Influence Transport Mode Choices
 - 5.5. Smoothing of Traffic Flows
- 6. Safety
 - 6.1. Necessity of Systematic Approaches
 - 6.2. Fundamentals of Accident Analysis in Each Step
 - 6.2.1. Identification of Sites to Be Treated
 - 6.2.2. Diagnosis: Problems, Causes and Possible Solutions
 - 6.2.3. Selection of Measures to be Applied
 - 6.2.4. Evaluation of Measures Applied

Urban and Community Planning

Kazuaki Miyamoto, Musashi Institute of Technology, Japan Antonio Paez, McMaster University, Canada

- 1. Introduction
- 2. Planning System
 - 2.1. Definition of Planning
 - 2.2. Systems Approach to Planning
 - 2.3. Types of Planning
 - 2.3.1. Land Use Planning
 - 2.3.2. Transportation Planning
 - 2.3.3. Environmental Planning
 - 2.3.4. Other Types of Planning
 - 2.3.5. Comprehensive Planning
 - 2.4. Hierarchical Geographic Structure
 - 2.4.1. Planning Area
 - 2.4.2. Relationships between Hierarchical Plans
 - 2.5. Planning Stages
 - 2.5.1. Master Plan
 - 2.5.2. Feasibility Study
 - 2.5.3. Detailed Design
 - 2.6. Planning Process
 - 2.6.1. Flow of Planning Process
 - 2.6.2. Determination of Objectives
 - 2.6.3. Survey and Data Gathering
 - 2.6.4. Data Analysis
 - 2.6.5. Policy-Making
 - 2.6.6. Implementation
 - 2.6.7. Monitoring
- 3. Urban and Community Systems
 - 3.1. Land-Use, Transportation and the Environment
 - 3.1.1. The City as a System
 - 3.1.2. Interactions between Urban System Elements
 - 3.2. Governmental Agencies
 - 3.2.1. Urban System Elements and the Agencies in Charge
 - 3.2.2. Coordination of Agencies
- 4. Policy Measures
 - 4.1. Classification of Policy Measures
 - 4.2. Regulation
 - 4.3. Pricing/Taxation
 - 4.4. Operation
 - 4.5. Education/Information
 - 4.6. Investment

5.

- 4.7. Integration of Policy Measures
- Analysis and Planning Techniques
- 5.1. Outline of Analysis Tools
 - 5.1.1. Investigation of the Present Situation
 - 5.1.2. Forecasts
 - 5.1.3. Unit of Analysis
 - 5.1.4. Key Factors for Planning
 - 5.2. Socio-Economic Framework
 - 5.2.1. Population 5.2.2. Economic Framework
 - 5.3. Land Price 5.3.1. Importance of Land Price
 - 5.3.2. Estimation of Land Price
 - 5.4. Urban Models 5.4.1. System of a Urban Model

- 5.4.2. Existing Urban Models and Applications
- 5.5. Decision Support System
- 6. Institutional Set-Up
 - 6.1. Planning Agencies and Practice
 - 6.2. Citizen Participation
- 7. Finance
 - 7.1. Government Finance and Project Evaluation
 - 7.2. Value Capture
 - 7.3. Private Finance

Wastewater Management Engineering

Tomonori Matsuo, *Toyo University, Japan* Eiichi Nakamura, *Ministry of Land, Infrastructure and Transport, Japan* Masahiro Osako, *National Institute for Environmental Studies, Japan*

- 1. Introduction
- 2. Wastewater Management
 - 2.1. Historical Summary of Water Pollution Control
 - 2.2. Collection and Treatment Schemes of Wastewater
 - 2.3. Characterization of Wastewater
 - 2.3.1. Municipal Wastewater
 - 2.3.2. Industrial Wastewater
 - 2.4. Processes for Wastewater Treatment
 - 2.4.1. Screening
 - 2.4.2. Sedimentation
 - 2.4.3. Activated Sludge Processes
 - 2.4.4. Biofilm Processes
 - 2.4.5. Stabilization Ponds and Aerated Lagoons
 - 2.4.6. Disinfection
 - 2.4.7. Advanced Wastewater Treatment
 - 2.5. Processes for Sludge Treatment
 - 2.5.1. Thickening
 - 2.5.2. Digestion
 - 2.5.3. Dewatering
 - 2.5.4. Incineration
 - 2.5.5. Composting
- 3. Solid Wastes Management
 - 3.1. Historical Summary of Wastes Problems
 - 3.1.1. Accumulation of Solid Wastes and Start of Public Health Issues
 - 3.1.2. Conversion of Mass-disposal Society to Recycle-Oriented Society
 - 3.1.3. International Concern over Hazardous Wastes
 - 3.2. Definition of Wastes
 - 3.2.1. Definition and Classification of Wastes
 - 3.2.2. Types of Wastes
 - 3.2.3. Properties of Wastes
 - 3.3. Waste Management Processes
 - 3.3.1. Generation of Wastes
 - 3.3.2. Sorting, Collection, Transportation
 - 3.3.3. Intermediate Treatment and Landfilling
 - 3.4. Waste Management System 3.4.1. Responsibility for Waste Management
 - 3.4.2. System for Environmental Preservation
 - 3.5. Waste Control Policies in the 21st Century
 - 3.5.1. Order of Priority of Waste Control Policies
 - 3.5.2. Building an Integrated Management System Concept of Zero Emissions
- 4. Concluding Remarks

Water Resources Engineering

Nobuyuki Tamai, Kanazawa University, Japan

1. Introduction

- 1.1. Hydraulics for Rivers
- 1.2. Hydraulics for Pipe Flows
- 1.3. Fluvial Hydraulics
- 1.4. Engineering Hydrology
- 1.5. Maritime Hydraulics
- 2. Recent Development in Water Resources Engineering
 - 2.1. Worldwide Surge of Environmental Concern
 - 2.2. Sustainability of Water Resources Projects
 - 2.3. Hydroinformatics
 - 2.4. Influence of Global Warming
- 3. Real Problems in Human Societies
 - 3.1. Flood and Drought
 - 3.2. Dams and Reservoirs
 - 3.3. Hydropower Generation
- 4. New paradigm—Water Ethics
 - 4.1. How Water Resources Engineering Satisfies Water Ethics?
 - 4.2. Partnered Approach
 - 4.3. Value of Environment

Survey Engineering

Eihan Shimizu, University of Tokyo, Japan

- 1. Introduction
 - 1.1. Brief Historical Review
 - 1.2. Geodetic Surveying and Plane Surveying
- 2. Fundamentals of Plane Surveying
 - 2.1. Plane Coordinate System
 - 2.2. Vertical Datum
 - 2.3. Errors in Surveying and Their Adjustments
- 3. Basic Survey Measurements
 - 3.1. Introduction
 - 3.2. Distance Measurement
 - 3.3. Angle Measurement
 - 3.4. Leveling
 - 3.5. Total Station
- 4. Control Surveys in Plane Surveying
 - 4.1. Introduction
 - 4.2. Triangulation
 - 4.3. Trilateration
 - 4.4. Traversing
 - 4.5. Control Surveys with GPS
- 5. Topographic Surveys
 - 5.1. Introduction
 - 5.2. Ground Methods
 - 5.3. Aerial Photogrammetric Methods
 - 5.4. Newer Methods for Topographic Surveys
- 6. Other Branches of Surveying
- 7. Surveying and Geographic Information System

- 1. Introduction
- 2. Geometric Background
 - 2.1. Ellipsoid
 - 2.2. Transformation between Geodetic Systems
 - 2.3. Geoid
 - 2.4. Datum Reconstruction with Space Geodesy
 - 2.5. Surveying Instruments for Horizontal Survey 2.5.1. Transit
 - 2.5.2. EDM
 - 2.5.3. Total Station
 - 2.6. Survey Instruments for Vertical Survey
- 3. Horizontal Control
 - 3.1. Datum Origin
 - 3.2. Geodetic Network
 - 3.3. Control Point surveying
 - 3.3.1. Triangulation
 - 3.3.2. Trilateration
 - 3.3.3. Traversing
 - 3.3.4. GPS in Trilateration and Traversing
- 4. Vertical Control
 - 4.1. Vertical Datum
 - 4.2. Leveling
- 5. Topographic Mapping
 - 5.1. Photogrammetry
 - 5.2. Ground Method

Global Positioning System

Tatsunori Sada, Mitsui Construction Co., Ltd., Japan

- 1. Introduction
- 2. Overview of GPS
 - 2.1. Space Segment
 - 2.2. Control segment
 - 2.3. User segment
 - 2.4. Point Positioning by GPS
 - 2.5. Errors in GPS Observables
 - 2.6. Coordinate System of GPS
- 3. Relative Positioning by GPS
- 3.1. Differential GPS
 - 3.2. Carrier Phase Positioning
- 4. Surveying with GPS
 - 4.1. Static Surveying
 - 4.2. Kinematic Surveying
- 5. The future of GPS

Photogrammetry

Hirofumi Chikatsu, Tokyo Denki University, Japan

- 1. Introduction
- 2. Orientation
 - 2.1. Stereoscopic instruments
 - 2.2. Exterior orientation
 - 2.3. Interior orientation
 - 2.4. Relative orientation
 - 2.5. Absolute orientation
 - 2.6. Successive orientation

- 2.7. Accuracy
- 3. Calibration
 - 3.1. Collinearity equations
 - 3.2. Initial approximations of orientation parameters
 - 3.3. Combined adjustment
 - 3.4. Analytical Aero-triangulation
- 4. Matching
 - 4.1. Area-based matching
 - 4.2. Feature-based matching
- 5. Accuracy in digital photogrammetry
- 6. Application examples of digital photogrammetry
 - 6.1. City modeling
 - 6.2. Human motion analysis
 - 6.2.1. Gait analysis 6.2.2. Ergonomics and management
 - 6.3. Digital archives of Relics
- 7. Into the 21st century

Satellite Remote Sensing

Eihan Shimizu, University of Tokyo, Japan

205

217

- 1. Introduction
- 2. Principles of Remote Sensing
 - 2.1. Electromagnetic Radiation
 - 2.2. Spectral Reflectance of Earth Surface Features
- 3. Overview of Representative Satellite Remote Sensing Systems and Their Characteristics
 - 3.1. Characteristics of Satellite Remote Sensing Systems
 - 3.1.1. Spatial Resolution
 - 3.1.2. Spectral Resolution
 - 3.1.3. Temporal Resolution
 - 3.2. Representative Satellite Remote Sensing Systems
- 4. Fundamentals of Data Processing
 - 4.1. Color Composite Imaging
 - 4.2. Image Classification
- 5. Recent Trends of Satellite Remote Sensing

Geographic Information System

Myoung-Young Pior, University of Meikai, Japan

- 1. Introduction
- 2. Types of Data used in GIS
 - 2.1. Graphic Data
 - 2.1.1. Graphic Entities
 - 2.1.2. Graphic Data Models
 - 2.1.3. Data Layer
 - 2.2. Nongraphic Data
 - 2.2.1. Attributes
 - 2.2.2. Topological Relationships
 - 2.2.3. Map Annotations
- 3. Data Acquisition and Data Base Maintenance
 - 3.1. Data Acquisition
 - 3.1.1. Generating New Digital Data
 - 3.1.2. Acquiring Existing Digital Data
 - 3.2. Data Base Maintenance
- 4. Spatial Data Analysis and Output Production
 - 4.1. Spatial Data Analysis

- 4.1.1. Measurement Analysis
- 4.1.2. Spatial Relationship Analysis
- 4.1.3. Buffering
- 4.1.4. Overlay
- 4.1.5. Thiessen Polygon
- 4.1.6. Network Operations
- 4.1.7. Digital Terrain Analysis
- 4.2. Output Production
- 5. GIS Applications
- 6. Other Similar Systems
 - 6.1. LIS (Land Information System)
 - 6.2. AM/FM (Automated Mapping/Facility Management) System
 - 6.3. CAD/CAM (Computer Aided Design/Computer Aided Manufacturing)

Construction and Structural Engineering

Atsuhiko Machida, Saitama University, Japan

- 1. Introduction
- 2. Structural Type
- 3. Structural Materials
- 4. Structural Analysis
- 5. Structural Design
- 6. Construction Management

Structural Types

Manabu Ito, University of Tokyo, Japan

- 1. Definition of Structure
- 2. Tension Structure
- 3. Arch
- 4. Column and Tower
- 5. Truss
- 6. Beam
- 7. Rigid Frame
- 8. Plane Structure
- 9. Spatial Structure
- 10. Selection of Structural Type

Structural Analysis

Worsak Kanok-Nukulchai, Asian Institute of Technology, Thailand

- 1. Structural System
- 2. Structural Modeling
- 3. Linearity of the Structural System
- 4. Definition of Kinematics
- 5. Definitions of Statics
- 6. Balance of Linear Momentum
- 7. Material Constitution
- 8. Reduction of 3D Constitutive Equations for 2D Plane Problems
- 9. Deduction of Euler-Bernoulli Beams from Solid
- 10. Methods of Structural Analysis
- 11. Discrete Modeling of Structures
- 12. Matrix Force Method
- 13. Matrix Displacement Method
- 14. Trends and Perspectives

232

238

Earthquake Protection

Motohiko Hakuno, University of Tokyo, Japan

- 1. Introduction
- 2. Some Recent Earthquakes: Important Observations and Lessons
- 3. Conclusion

Structural Stability and Nonlinear Behavior

H. Iemura, Kyoto University, Japan

- 1. Introduction
- 2. Nonlinear Materials and Members
- 3. Structural Limit States
- 4. Structural Failures
 - 4.1. Buckling Failures
 - 4.2. Impact Failures
 - 4.3. Shear Failures
 - 4.4. Flexural Failures
- 5. Inelastic Behavior
 - 5.1. Hysteretic Restoring Force
 - 5.2. Inelastic Energy Absorption
 - 5.3. Inelastic Earthquake Response
- 6. Earthquake Energy Partitioning
- 7. Structural Deterioration
- 8. Damage Index

Earthquake Resistant Design

Masanori Hamada, Waseda University, Japan

- 1. Seismic Coefficient Method
- 2. Response Spectrum
- 3. Modified Seismic Coefficient Method
- 4. Elasto-Plastic Response and Ultimate Strength of Structures
- 5. Performance-Based Design
- 6. Earthquake Ground Motion for Design
- 7. Dynamic Response Analysis
- 8. Response Displacement Method
- 9. Seismic Diagnosis and Retrofitting

Earthquake Resistant Bases and Foundations

Kohji Tokimatsu, Tokyo Institute of Technology, Japan

- 1. Introduction
- 2. Ground Failures Other than Soil Liquefaction
 - 2.1. Slope Failures
 - 2.2. Debris Flow
- 3. Ground Failures Associated with Soil Liquefaction
 - 3.1. Soil Liquefaction
 - 3.2. Mechanism of Soil Liquefaction
 - 3.3. Liquefaction-induced Lateral Spreading
 - 3.4. Pile Damage Resulting from Liquefaction-induced Ground Displacement
- 4. Ground Motion Characteristics in Soft and Liquefied Soils
- 5. Simplified Procedure for Soil Liquefaction Evaluations
- 6. Liquefaction Remediations
- 7. Simplified Design Method for Pile Foundations

305

315

- 7.1. Estimation of Stress and Deformation of Pile
- 7.2. Estimation of Cyclic Ground Displacement7.3. Estimation of Permanent Ground Displacement near Waterfront
- 8. Base Isolation

Earthquake-Resistant Building Construction Shunsuke Otani, The University of Tokyo, Japan	334	
 Introduction Historical Development Seismic Actions Characteristics of Earthquake Motion Lateral Response in Buildings Performance Requirements of Buildings Life Safety Limit States Reparability Limit States Serviceability Limit States Serviceability Limit States Reparability Limit States Reparability Limit States Retrofitting of Existing Buildings 		
Safety Analysis Masaru Hoshiya, <i>Musashi Institute of Technology, Japan</i>	344	
 Design Principle Uncertainties for Structural Systems and Acting Loads Safety Factor and Probability of Failure Design Practice Safety Goals and Structural Performance 		
Index	349	
About EOLSS	357	
VOLUME II		
Geotechnical Engineering	1	

Kenji Ishihara, <i>Chuo University, Japan</i>	
1.	Introduction
2.	Subsurface Investigation for Site Characterization
	2.1. Standard Penetration Test (SPT)
	2.2. Cone Penetration Test (CPT)
	2.3. Plate Loading Test
	2.4. Geophysical Investigations
	2.4.1. Downhole and Uphole Method
	2.4.2. Crosshole Method
3.	Foundations
	3.1. Types of Foundations
	3.1.1. Individual Column Footing
	3.1.2. Continuous Foundation
	3.1.3. Mat or Raft Foundation

3.1.4. Pile Foundation

- 3.2. Methods of Pile Installation
- 3.3. Design Tenets for Footing Foundation
- 3.4. Pile Foundation
 - 3.4.1. Criteria for Pile Design
- 4. Earth Pressure and Open Cuts
 - 4.1. Earth Pressure on Retaining Wall
 - 4.2. Earth Pressure in Open Cut
 - 4.3. Ground Deformation Induced by Open Excavation
- 5. Ground Improvement
 - 5.1. Replacement
 - 5.2. Sand Drain and Dewatering for Clay Deposits
 - 5.3. Prefabricated Vertical Drain (PVD)
 - 5.4. Compaction of Sand Deposits
 - 5.4.1. Vibro-floatation
 - 5.4.2. Sand Compaction Pile (SCP)
 - 5.4.3. Drainage Method for Sandy Soils
 - 5.5. Other Improvement Methods for Cohesive Soils5.5.1. Vibro-Compaction in Cohesive Soil Deposits
 - 5.6. Dynamic Compaction
 - 5.7. Solidification Technique
 - 5.7.1. Permeation Grouting
 - 5.7.2. Jet Grouting
 - 5.7.3. Deep Mixing Method (DMM)
- 6. Underground Development
 - 6.1. Tunneling in Soft Grounds 6.1.1. Shield Tunneling
 - 6.2. Stability of Tunnel Heading
 - 6.3. Ground Movement

Soil Mechanics

Kenji Ishihara, Science University of Tokyo, Japan

- 1. Introduction
- 2. Definition of Property Indices
 - 2.1. Definition of Basic Property Indices
 - 2.1.1. Void Ratio, *e*
 - 2.1.2. Saturation Ratio, S_r (%)
 - 2.1.3. Water Content, ω (%)
 - 2.1.4. Bulk or Wet Unit Weight γ or γ_t
 - 2.1.5. Dry Unit Weight γ_d
 - 2.1.6. Unit Weight and Specific Weight of the Solid Phase γ_s and G_s
 - 2.1.7. Buoyant Unit Weight or Submerged Unit Weight, γ^1
 - 2.2. Relations among Property Indices
 - 2.3. Sieve Analysis and Grain Composition 2.3.1. Grain Composition
 - 2.4. Consistency of Fine-Grained Soils 2.4.1. Liquid Limit and Plastic Limit 2.4.2. Plasticity Index
- 3. Compaction of Soils
- 4. Seepage of Water through Soils
 - 4.1. Darcy Law
 - 4.1.1. Measurement of Permeability Coefficient
 - 4.2. Seepage Instability
 - 4.2.1. Boiling in Sand Deposits
 - 4.2.2. Piping in Cohesive Soils
 - 4.2.3. Filter
- 5. Consolidation of Clay

- 5.1. Compressibility of Clays
- 5.2. Normal Consolidation and Overconsolidation
- 5.3. Theory of Consolidation
- 5.4. Ground Settlement Due to Pumping Water
- 6. Strength of Soil
 - 6.1. Shear Strength of Granular Soils
 - 6.2. Shear Strength of Cohesive Soils
 - 6.3. Shear Strength of Soils in General
 - 6.4. Environments of Drainage Influencing Shear Strength of Soils 6.4.1. Dilatancy of Granular Materials
 - 6.4.2. Undrained Shear
 - 6.4.3. Drained Shear
 - 6.4.4. Excess Pore Water Pressure
 - 6.5. Undrained Shear Strength of Clays
- 7. Earth Pressure
 - 7.1. Rankine Earth Pressure Theory
 - 7.2. Coulomb Earth Pressure Theory
- 8. Bearing Capacity of Foundations
 - 8.1. Background Consideration
- 9. Stability Analyses of Slopes
 - 9.1. Stability Analysis for a Simple Case
 - 9.2. Stability Analysis for General Slopes
 - 9.3. Simple Method (Swedish Method)
 - 9.4. Bishop Method
 - 9.5. Determination of the Factor of Safety
 - 9.6. Conduct of Stability Analysis
 - 9.6.1. Design of Earth Structures
 - 9.6.2. Evaluation of Degree of Safety for Existing Earthfills and Natural Slopes
 - 9.6.3. Back-analysis of Collapsed Slopes

Engineering Geology

108

David M. Cruden, Department of Civil and Environmental Engineering and Earth and Atmospheric Sciences, University of Alberta, Canada

- 1. Characteristics Properties of Minerals
 - 1.1. Definitions and Classification
 - 1.2. Optical Properties
 - 1.3. Crystallographic Properties
 - 1.4. Other Properties
 - 1.5. Identification Strategy
- 2. Igneous Rocks
 - 2.1. Classification by Texture
 - 2.2. Composition
- 3. Sedimentary Rocks
 - 3.1. Classification
 - 3.2. Clastic Sediments
 - 3.3. Chemical Sediments
 - 3.4. Organic Sediments
 - 3.5. Composition of Sedimentary Rocks
 - 3.6. Structures in Sedimentary Rocks
- 4. Metamorphic Rocks
 - 4.1. Definitions
 - 4.2. Types of Metamorphism
 - 4.3. Mineralogical Changes as a Function of Temperature and Pressure
 - 4.4. Metamorphic Texture
 - 4.5. Nomenclature
- 5. Ores, Industrial Minerals and Fossil fuel

- 5.1. Explanation of Terms
- 5.2. Ores
- 5.3. Fossil Fuels
- 5.4. Industrial Minerals
- 6. The Shape of the Land Surface
 - 6.1. Topographic Maps
 - 6.2. Aerial Photographs
 - 6.3. Erosion by Water
 - 6.4. Alluvial Deposits
 - 6.5. Aeolian Deposits
- 7. Erosion and Deposition by Gravity and Ice
 - 7.1. Types of Slope Movement
 - 7.2. Erosion by Flowing Ice
 - 7.3. Erosion by Glacial Meltwater
 - 7.4. Glacial Deposits
- 8. Geological Maps
 - 8.1. Introduction
 - 8.2. The Orientation of Surfaces
 - 8.3. Folds
- 9. The Record in the rocks
 - 9.1. Faults
 - 9.2. Plutons
 - 9.3. Unconformities
 - 9.4. Relative Age of Rocks
 - 9.5. The Geological Time-Scale
- 10. The Dynamic Earth
 - 10.1. Plate Motion
 - 10.2. Volcanoes
 - 10.3. Earthquakes

Mining Engineering and Mineral Transportation

Yuichi Nishimatsu, Sumitomo Metal Mining Co. Ltd., Japan

- 1. Introduction
- 2. A Historical Review of Mining Engineering
- 3. Features of Mining
 - 3.1. Industrial and Technical Features
 - 3.2. Geographical Separation between Production and Consumption of Minerals
- 4. Development and Operation of Mines
- 5. Mining and Mining Equipments in Underground Mines
 - 5.1. Mining Operation in the Working Face of Metal Mines
 - 5.2. Mining Operation in the Working Face of Coal Mines
 - 5.3. Excavation and Loading in the Driving Face of Roadway
- 6. Mineral Transportation in Underground Mines
 - 6.1. Mineral Transportation in Level Roadway
 - 6.2. Rope Haulage and Shaft Winding
- 7. Rock Pressure and Support in Underground Mines
 - 7.1. Rock Pressure
 - 7.2. Support System in the Stope and Working Face
 - 7.3. Support in Roadway
- 8. Surface Mining
 - 8.1. Features of Surface Mining
 - 8.2. Open Pit Mine of Massive Mineral Deposit
 - 8.3. Strip Mining of Coal Deposits
 - 8.4. Surface Mining of Alluvial Mineral Deposit (Placer Mining)
- 9. Water Drainage and Mine safety
 - 9.1. Water Drainage in Mines

- 9.2. Ventilation and Mine Safety
- 10. Environmental Impact and Reclamation in Mining
- 11. Conclusion

Surface Mining Methods and Equipment

Jiro Yamatomi, *The University of Tokyo, Japan* Seisuke Okubo, *The University of Tokyo, Japan*

- 1. Surface Mining Methods
 - 1.1. Classification of Surface Mining Methods
 - 1.2. Open Pit vs. Underground Mining Methods
 - 1.3. Open Pit Mining
 - 1.4. Open Cast Mining
 - 1.5. Placer Mining
 - 1.6. Solution Mining
- 2. Surface Mining Machinery

Underground Mining Methods and Equipment

Seisuke Okubo, *The University of Tokyo, Japan* Jiro Yamatomi, *The University of Tokyo, Japan*

- 1. Underground Mining Methods
 - 1.1. Classification of Underground Mining Methods
 - 1.2. Underground Operations in General
 - 1.3. Room-and-pillar Mining
 - 1.4. Sublevel Stoping
 - 1.5. Cut-and-fill Stoping
 - 1.6. Longwall Mining
 - 1.7. Sublevel Caving
 - 1.8. Block Caving
- 2. Underground Mining Machinery

Drilling Machines

Hideshi Watanabe, Furukawa Co. Ltd., Japan

- 1. Introduction
 - 1.1. Principles of Rock Drilling
 - 1.2. Drill Adaptability
- 2. Construction of Drilling Equipment
 - 2.1. Working Fluid
 - 2.2. Thrust and Feed Equipment
 - 2.3. Rotation System
 - 2.4. Drilling Rod
 - 2.5. Cuttings Removal (Flushing)
 - 2.6. Bit
 - 2.7. Supporting Equipment and Carriers
- 3. Mechanical Principles of Percussion Drill
 - 3.1. Construction of Percussion Rock Drills
 - 3.2. Features of Percussion Rock Drills
 - 3.3. Output Parameters
 - 3.4. Principles of Elastic Wave Propagation and Penetration Resistance of the Bit
- 4. Classification of Rock Drills
- 4.1. Percussion Rock Drills
 - 4.1.1. Hand-held Rock Drills (Pneumatic)
 - 4.1.2. Drifter

155

171

4.1.3. DTH

4.2. Rotary Drill

- 5. Applications of Drilling Equipment
 - 5.1. Underground Mining
 - 5.2. Surface Mining

Offshore Drilling and Production Equipment

Shoichi Tanaka, *The University of Tokyo, Japan* Yo Okada, *Japan Oil Engineering Co., Japan* Yuichiro Ichikawa, *Japan Drilling Co., Ltd., Japan*

- 1. Introduction
- 2. Outline of Rotary Drilling Method
- 3. Offshore Drilling Structures
 - 3.1. Technical Features of Offshore Drilling
 - 3.2. Mobile Bottom-supported Rigs
 - 3.2.1. Jack-up Drilling Rigs (Jack-up Rigs, Self-elevating Drilling Rigs)
 - 3.2.2. Submersible Drilling Rigs (Submersible Rigs, Swamp Barges)
 - 3.2.3. Tender-Assisted Platforms and Tenders
 - 3.3. Floating Offshore Drilling Rigs (Floaters)3.3.1. Technologies Required by Floaters3.3.2. Drillships
 - 3.3.3. Semisubmersible Drilling Rig
 - 3.4. Location Surveys for Offshore Drilling
- 4. Offshore Oil/Gas Production Systems
 - 4.1. Brief History of Offshore Production Systems
 - 4.2. Various Types of Offshore Platforms4.2.1. Bottom-supported Platforms4.2.2. Floating Platforms
 - 4.3. Subsea Production Systems
 - 4.3.1. Subsea Christmas Trees
 - 4.3.2. Subsea Manifolds
 - 4.3.3. Subsea Boosting and Processing
 - 4.3.4. Subsea Control System
 - 4.4. Prospect of Offshore Production System

Mineral Comminution and Separation Systems

Toshio Inoue, University of Tokyo, Japan

- 1. Significance of Mineral Beneficiation
- 2. Overview of Mineral Processing Systems
- 3. Components of Mineral Beneficiation Technology
- 4. Comminution System
- 5. Gravity Separation
- 6. Flotation
- 7. Magnetic Separation
- 8. Electrostatic Separation
- 9. Solid-Liquid Separation and Waste Treatment
- 10. Other Methods of Mineral Extraction
- 11. Disposal of Solid Wastes and Waste Water Treatment
- 12. Conclusion

Surface Mining Transportation Systems

Takao Nagai, Komatsu Ltd., Japan

217

- 1. Surface Mining
 - 1.1. Surface Mining Operation
 - 1.2. Surface Mining Methods
- 2. Equipment Used for Surface Mining
 - 2.1. Surface Mining Equipment
 - 2.2. Transportation System Used in Surface Mining
 - 2.2.1. Hauling Truck
 - 2.2.2. Dragline and Stripping Shovel
 - 2.2.3. Bucket Wheel Excavator
 - 2.2.4. Belt Conveyor
 - 2.2.5. Motor Scraper
- 3. Transportation Management System for Surface Mining

Underground Mining Transportation Systems

Kikuo Matsui, Kyushu University, Japan

- 1. Introduction
- 2. From Surface to Underground/Vice Versa
 - 2.1. Shafts
 - 2.1.1. Cage
 - 2.1.2. Skips
 - 2.2. Inclined Shafts or Inclined Drifts
- 3. Underground Transport for Materials and Equipment
 - 3.1. Track System/Rail-mounted Systems
 - 3.2. Trackless Systems
 - 3.3. Combined Systems
 - 3.4. Longwall Equipment Transport
- 4. Ore/Coal Transport
 - 4.1. Metalliferous Mines
 - 4.2. Coal Mines
 - 4.2.1. Heading Face Area
 - 4.2.2. Longwall Face Area
 - 4.2.3. Belt Conveyors
 - 4.2.4. Surge Control for Belt Conveyor Haulage
 - 4.2.5. Rail Systems
 - 4.2.6. Shaft Winding
- 5. Personnel Transport
 - 5.1. Access to Underground
 - 5.2. Personnel Transport in Working Sites
 - 5.2.1. Trackless Personnel Transport Systems5.2.2. Track-mounted Personnel Transport Systems
 - 5.3. Belt Conveyor Systems
 - 5.4. Other Systems

Mining and Exploration for Mineral Resources

Takashi Nishiyama, Kyoto University, Japan Katsuhiko Kaneko, Hokkaido University, Japan

- 1. Introduction
- 2. Geologic Prospecting
 - 2.1. Ore Deposits Formed During Magmatic Process
 - 2.1.1. Separation and Concentration due to Crystallization in Basic Magma at Specific Places and at Specific Stages
 - 2.1.2. Separation and Concentration due to Immiscibility in the Melt
 - 2.2. Hydrothermal Deposits 2.2.1. Porphyry-type Deposits

287

- 2.2.2. Kuroko-type Massive Sulfide Deposits
- 2.2.3. Skarn-type Deposits
- 2.2.4. Vein-type Deposits
- 2.3. Sedimentary Deposits
- 3. Geophysical Prospecting
 - 3.1. Gravity Survey
 - 3.2. Magnetic Survey
 - 3.3. Electric Survey
 - 3.3.1. Self-potential Method
 - 3.3.2. Resistivity Method
 - 3.3.3. Induced Polarization Method
 - 3.3.4. Electromagnetic Method
 - 3.4. Seismic Survey
 - 3.4.1. Reflection Method
 - 3.4.2. Refraction Method
 - 3.5. Radiometric Survey
- 4. Geochemical Prospecting
 - 4.1. Basic Principles
 - 4.2. A Few Practical Geochemical Explorations
 - 4.3. Fluid Inclusion and Isotope Studies

Index

331

About EOLSS