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Summary 

 

Planetary systems, under suitable general assumptions, admit positive measure sets of 

“initial data” whose evolution gives rise to the planets revolving on nearly circular and 

nearly co–planar orbits around their star. This statement (or more primitive 

formulations) challenged astronomers, physicists and mathematicians for centuries. In 

this chapter we shall review the mathematical theory (with particular attention to recent 

developments) needed to prove the above statement.  

 

1. The N–Body Problem: A Continuing Mathematical Challenge 

 

The problem of the motion of 2N   point–masses (i.e., ideal bodies with no physical 

dimension identified with points in the Euclidean three–dimensional space) interacting 

only through Newton‟s law of mutual gravitational attraction, has been a central issue in 

astronomy, physics and mathematics since the early developments of modern calculus. 

When 2N   the problem has been completely solved (“integrated”) by Newton: the 

motion take place on conics, whose focus is occupied by the center of mass of the two 

bodies; but for 3N   a complete understanding of the problem is still far away.  

 

While the original impulse, coming from astronomy, has been somehow shaded by the 

massive use of machines for computing orbits of celestial bodies or satellites, the 

mathematical richness and beauty of the N –body problem has retained most of its 

original attraction; for a selection of recent contributions, see, e.g., (Chenciner and 
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Montgomery, 2000), (Ferrario and Terracini, 2004), (Hampton and Moeckel, 2006), 

(Chen, 2007), (Fusco, Gronchi and Negrini, 2011), (Chierchia and Pinzari, 2011 (c)).  

 

Here, we will be concerned with the planetary N –body problem, which, as the name 

says, deals with the case of one body (the “Sun” or the “Star”) having mass much bigger 

than the remaining bodies (“planets”). The main question is then to determine “general” 

conditions under which the planets revolve around the Sun without collisions and in a 

“regular way” so that, in particular, no planet crashes onto another planet or onto the 

Sun, nor does it escape away from such “solar system”.  

 

Despite the efforts of Newton, Euler, d‟Alembert, Lagrange, Laplace and, especially, 

Henri Poincaré and G.D. Birkhoff, such question remained essentially unanswered for 

centuries. It is only with the astonishing work of a 26–year–old mathematician, V.I. 

Arnold (1937–2010), that a real breakthrough was achieved. Arnold, continuing and 

extending fundamental analytical discoveries of his advisor A.N. Kolmogorov on the so 

called “small divisors” (singularities appearing in the perturbative expansions of orbital 

trajectories), stated in 1963 (Arnold, 1963) a result, which may be roughly formulated 

as follows (verbatim formulations are given in Section 3.1 below).  

 

If the masses of the planets are small enough compared to the mass of the Sun, there 

exists, in the phase space of the planetary N –body problem, a bounded set of positive 

Lebesgue measure corresponding to planetary motions with bounded relative distances; 

such motions are well approximated by Keplerian ellipses with small eccentricities and 

small relative inclinations.  

 

Arnold gave a brilliant proof in a special case, namely, the planar three–body problem 

(two planets), giving some suggestions on how to generalize his proof to the general 

case (arbitrary number of planets in space). However, a complete generalization of his 

proof turned out to be quite a difficult task, which took nearly another fifty years to be 

completed: the first complete proof, based on work by M.R. Herman, appeared in Féjoz 

(2004) and a full generalization of Arnold‟s approach in Chierchia and Pinzari  (2011c).  

 

The main reason beyond the difficulties which arise in the general spatial case, is related 

to the presence of certain “secular degeneracies” which do not allow a tout court 

application of Arnold‟s “fundamental theorem” (see Section 3.2) to the general 

planetary case.  

 

In this chapter we shall give a brief account (avoiding computations) of these results 

trying to explain the main ideas and technical tools needed to overcome the difficulties 

involved.  

 

2. The Classical Hamiltonian Structure 

 

2.1. Newton Equations and Their Hamiltonian Version 

 

The starting point is with the Newton‟s equations for 1 n  bodies (point masses), 

interacting only through gravitational attraction: 
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where ( ) ( ) ( ) ( ) 3
1 2 3( )i i i iu u u u     are the Cartesian coordinates of the thi  body of 

(unscaled) mass m 0i  , 2
ii

u u u u      is the standard Euclidean norm, “dots” 

over functions denote time derivatives, and the gravitational constant has been set to 

one (which is possible by rescaling time t ).  

 

Equations (1) are invariant by change of “inertial frames”, i.e., by change of variables of 

the form ( ) ( ) ( )i iu u a ct    with fixed 3,a c . This allows us to restrict the 

attention to the manifold of “initial data” given by 

 

( ) ( )

0 0

m (0) 0, m (0) 0;
n n

i i
i i

i i

u u
 

    (2) 

 

indeed, just replace the coordinates ( )iu  by 
( ) ( )iu a ct   with  

 

1 ( ) 1 ( )
tot tot tot

0 0 0

m m (0) and m m (0) m m
n n n

i i
i i i

i i i

a u c u 
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The total linear momentum ( )
tot 0

M : m
n i

ii
u


  does not change along the flow of (1), 

i.e., tot 0M   along trajectories; therefore, by (2), totM ( )t  vanishes for all times. But, 

then, also the position of the barycenter ( )

0
B( ) u ( )

n i
ii

t m t


  is constant ( B 0 ) and, 

again by (2), B( ) 0t  . In other words, the manifold of initial data (2) is invariant under 

the flow (1).  

 

Equations (1) may be seen as the Hamiltonian equations associated to the Hamiltonian 

function 

 
( ) 2

N ( ) ( )
0 0

m m| |
: ,

2m | |

in
i j

i j
i i j ni

U

u u   

 


   

 

where the subscript N  signifies Newton,  
( ) ( )( , )i iU u  are standard symplectic variables 

( ( ) ( )mi i
iU u  is the momentum conjugated to ( )iu ) and the phase space is the 

“collisionless” open domain in 
6( 1)n

 given by  

 
( ) ( ) 3 ( ) ( ){ , 0 }i i i jU u u u i j n         

 

endowed with the standard symplectic form  
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We recall that the Hamiltonian equations associated to a Hamiltonian function 

1 1( , ) ( )n nH p q H p p q q    , where ( , )p q  are standard symplectic variables (i.e., 

the associated symplectic form is 
1

n

i ii
dp dq dp dq


   ) are given by  

 

,
i e ,

(1 ).

qq i i
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q H H i nq

    
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 (4) 

 

We shall denote the standard Hamiltonian flow, namely, the solution of (4) with initial 

data 0p  and 0q , by 0 0( , )t
H p q . For general information, see (Arnold et al, 2006).  

 

2.2 The Linear Momentum Reduction 

 

In view of the invariance properties discussed above, it is enough to consider the 

submanifold  

 

( ) ( )
0

0 0

( , ) m 0
n n

i i
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U u u U
 

 
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which corresponds to the manifold described in (2).  

 

The submanifold 0  is symplectic, i.e., the restriction of the form (3) to 0  is again 

a symplectic form; indeed:  

 

( ) ( ) ( ) ( )0

0 1 0
0

m m
.

m

n n
i i i ii

i i

dU du dU du
 

  
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Following Poincaré, one can perform a symplectic reduction (“reduction of the linear 

momentum”) allowing to lower the number of degrees of freedom by three units; recall 

that the number of degree of freedom of an autonomous Hamiltonian system is half of 

the dimension of the phase space (classically, the dimension of the configuration space). 

Indeed, let he ( , ) ( , )R r U u    be the linear transformation given by  

 
(0) (0) ( ) (0) ( )

he (0) (0) ( ) ( ) ( )

1
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i i
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
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


 (5) 

 

such transformation is symplectic, i.e.,  
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recall that this means, in particular, that in the new variables the Hamiltonian flow is 

again standard: more precisely, one has that 
N N

he he
t t


    , where the subscript 

“he” signifies helium (sun) and the little circles mean composition. 

 

Letting  
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one sees that, in the new variables, 0  reads 
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The restriction of the 2–form (3) to 0  is simply ( ) ( )
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Thus, the dynamics generated by N  on 0  is equivalent to the dynamics generated 

by the Hamiltonian 6
N( , ) ( , )nR r R r   on 
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with respect to the standard symplectic form ( ) ( )

1
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Since we are interested in the planetary case, we perform the trivial rescaling by a small 

positive parameter  :  
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which leaves unchanged Hamilton‟s equations. Explicitly, if  
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the phase space being  
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Recall that ( , )F X x  is an integral for ( , )X x  if { } 0F    where 

{ , } X x x XF G F G F G     denotes the (standard) Poisson bracket. Now, observe that 

while ( )

1

n i

i
X

  is obviously not an integral for plt , the transformation (5) does 

preserve the total angular momentum ( ) ( )

0

n i i

i
U u


 , “ “ denoting the standard vector 

product in 
3

, so that the total angular momentum  
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is still a (vector–valued) integral for plt . The integrals Ci , however, do not commute 

(i.e., their Poisson brackets do not vanish):  

 

1 2 3 2 3 1 3 1 2{C ,C } C , {C ,C } C , {C ,C } C ,    

 

but, for example, 
2| C |  and 3C  are two commuting, independent integrals.  

 

2.3. Delaunay Variables 

 

The Hamiltonian 
(0)
plt  in (6) governs the motion of n  decoupled two–body (signified 

by the subscript 2B) problems with Hamiltonian 
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Such two–body systems are, as well known, integrable. The explicit “symplectic 

integration” is done by means of the Delaunay variables, whose construction we, now, 

briefly, recall (for full details and proofs, see, e.g., (Celletti and Chierchia, 2007)).  

 

Assume that  ( ) ( ) ( )
2B 0i i ih X x   so that the Hamiltonian flow  ( ) ( )

( )
2B

t i i
i

h
X x   evolves on 

a Keplerian ellipse iE  and assume that the eccentricity (0 1)ie   .  

 

Let ia , iP  denote, respectively, the semimajor axis and the perihelion of iE .  

 

 
 

Figure 1. Spatial Delaunay angle variables. 

 

Let us, also, introduce the “Delaunay nodes”  

 
(3) ( ): C 1 ,i

i k i n      (8) 

 

where 
(1) (2) (3)( , , )k k k  is the standard orthonormal basis in 

3
. Finally, for 3,u v  

lying in the plane orthogonal to a non–vanishing vector w , let ( , )w u v  denote the 

positively oriented angle (mod 2 ) between u  and v  (orientation follows the “right 

hand rule”).  

 

The Delaunay action–angle variables  i i i i i ig        are, then, defined as 
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Notice that the Delaunay variables are defined on an open set of full measure of the 

Cartesian phase space 3 3n n
 , namely, on the set where (0 1)ie    and the nodes i  

in (8) are well defined; on such set the “Delaunay inclinations” ii  defined through the 

relations  

 
( ) (3)

( )

C
cos i : ,

| C |

i
i

i i
i

k 
 


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are well defined and we choose the branch of 1cos  so that i (0 )i   .  

 

The Delaunay variables become singular when ( )C i  is vertical (the Delaunay node is no 

more defined) and in the circular limit (the perihelion is not unique). In these cases 

different variables have to be used (see below).  

 

On the set where the Delaunay variables are well posed, they define a symplectic set of 

action–angle variables, meaning that  
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1 1
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for a proof, see Section 3.2 of (Celletti and Chierchia, 2007).  

 

In Delaunay action–angle variables (( ) ( g ))     the Hamiltonian 
(0)
plt  takes the 

form  
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We shall restrict our attention to the collisionless phase space  
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endowed with the standard symplectic form  

 

1

g
n

i i i i i i

i

d d d d d d


          

 

Notice that the 6n –dimensional phase space plt  is foliated by 3n–dimensional (0)
plt –

invariant tori 3{ }  , which, in turn, are foliated by n –dimensional tori 

{ } n  , expressing geometrically the degeneracy of the integrable Keplerian limit of 

the (1 )n –body problem. 

- 

- 

- 
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