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Summary 
 
A few examples (Poisson process, Markov chain, martingale, Brownian motion) of 
stochastic processes are given. On the general theory of stochastic processes 
Kolmogorov's existence theorem is formulated. Somewhat more detailed studies of the 
Poisson process and Brownian motion are presented. 

1. Examples 

1.5. Poisson Process 
 
Consider a certain mass of radioactive substance and assume 
 
(a) If 0 < t1 < t2 ≤ t3 < t4 and Ak(s,t) denotes the event that during the time interval (s,t) k 

disintegrations occur then the events Ak(t1,t2) and AA(t3,t4) are independent for all 

nonnegative integer values of k and A. 
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(b) The events Ak(s,t) k = 0,1,2,… form a complete system i.e. 

0 ( , ) (  is the "sure event").kk A s t∞
= = Ω Ω∪  

 
(c) If k is given P{Ak(s,t)} depends only on the difference t−s. Let P{Ak(s,t)} = Pk(t−s). 
 
(d) If t is small enough, the probability, that during a time interval of length t there 

occur disintegrations > 1, is negligibly small compared to the probability that occurs 
exactly one. That is 

 
0 1

0 1

1 ( ) ( )lim 0.( )t

P t P t
P t→

− −
=  

 
Let π(t) be the number of disintegrations during the time interval (0, t). Then clearly 
 

{ ( ) } ( ).kt k P tπ = =P  
 
π(t) (t ≥ 0) is an integer valued random process. It is a special stochastic process called 
Poisson process. 
 
We obtain the same mathematical model investigating a number of practical situations. 
For example let π(s,t) be the number of arrivals at a bank in (s,t). Then condition (a) 
means that the numbers of arrivals in disjoint intervals are independent, (b) means that 
the number of arrivals in a finite interval is finite. Condition (c) holds if the process is 
homogeneous in time. Finally (d) holds if two different customers cannot arrive in the 
very same moment. 
 
As a further example consider the number of red blood cells in a microscope. It is 
natural to assume that the numbers of cells in disjoint domains are independent. The 
probability that a domain contains k cells depends only on the area of the domain but 
not on its location and a small domain does not contain more than one cell. Hence we 
have the above conditions on a plane, instead of the time axis. However, the 
fundamental properties of this process are the same in any dimension. 
 
1.6. Markov Chain 
 
Let X1,X2,… be a sequence of random variables taking the values 1,2,… i.e. we assume 
that 
 

ij 1 { } 1 ( 1,2, ).X j i∞
= = = =∑ P …  

 
Such a system is also a stochastic process. It is called a Markov chain if 
 
{ } { }1 1 1 1 1 1, ,n n n n n n n nX j X j X j X j X j− − − −= = = = = =P P…  (1) 
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where n = 1,2,… and j1,j2,… jn, is an arbitrary sequence of integers. 
 
Markov chains are usually interpreted as follows: 
 
Let S be a physical system which can be in the states A1,A2,…. Let the state of the 
system change at time t = 2,3,… and put Xi = j if at time i the system is in state j. 
 
The hypothesis (1) that the random changes of state of a system S form a Markov chain 
can be expressed as follows: The past of the system can influence its future only 
through its present state. 
The Markov chain is a natural model of the "random walk". Consider a tourist standing 
at a corner of a town. He chooses randomly one of the possible directions (streets) and 
goes one block in the chosen direction. Arriving at the next corner he chooses again 
randomly the next direction without remembering his previous walk. The corners are 
numbered as 1,2,… and X1,X2,… is the sequence of the corners visited by the tourist. 
Condition (1) expresses that the tourist cannot remember his previous tour. 
 
1.7. Martingale 
 
Let X1,X2,… be a sequence of random variable staking the values 0,±1,±2,… i.e. we 
assume that 
 

ij { } 1 ( 1,2, ).X j i+∞
=−∞ = = =∑ P …  

 
The sequence {Xn} can be thought of as the fortune at time n of a player who is betting 
on a fair game. The fairness of the game is expressed by the following condition 
 
( )1 1, ,n n nX X X X+ =E …   (2) 

 
i.e. the expected value of the fortune of the player after the (n+1)-th game is equal to his 
fortune after the n-th game. 
 
The sequence {Xn} satisfying (2) is called a martingale. 
 
1.8. Brownian Motion 
 
The English botanist Robert Brown observed in 1828 that microscopic particles 
suspended in a liquid are subject to continual molecular impacts and execute zigzag 
movements. For sake of simplicity now we consider the case of the linear motion. Let 
{W(t), t≥0} be the location of the particle at time t and assume that 
 

(0) 0,W =  
 

21/ 2 / 2
1/ 2

1{ ( ) ( ) ( ) } (0 )
(2 )

x uW t W s x t s e du s t−
−∞

− < − = ≤ < < ∞
π ∫P  
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i.e. W(t) − W(s) is normally distributed, 
 
W(t2) − W(t1), W(t4) − W(t3),…,W(t2n) − W(t2n−1) are independent random variables 
whenever 
 

1 2 3 2 1 20 ( 2,3, ),n nt t t t t n−≤ < ≤ < ≤ < =… …  
 
W(t) is a continuous function with probability 1. 
 
The stochastic process {W(t), t ≥ 0} is called Brownian motion or Wiener process. We 
note that the Brownian motion is the most studied and applied continuous stochastic 
process. For example in Bachelier's work (1900) it is a model of stock market. 

2. Definition of the Stochastic Process 

A stochastic (or random) process X(t) is formally defined to be a collection of random 
variables and indexed by the elements of a parameter set t∈T. The set T generally is one 
of these 
 

1 ( , ), (0, ),+= −∞ +∞ = ∞  
 

{ , 1,0,1,2, }, {0,1,2, }, ,d+= − =… … …  
 
where Rd is the d-dimensional Euclidean space. In Examples 1.1, 1.2, 1.3, 1.4 the 
parameter sets T are R+, Z+, Z+, R+ respectively. The values of the random variables 
generally are taken from R1. It is the case in Example 1.4, in Examples 1.1, 1.2 the set 
of possible values is Z+, in Example 1.3 it is Z. In a number of applications it is worth-
while to consider more general sets of possible values e.g. Rd. The set of possible values 
is also called state-space. 
 
The stochastic process X(t) can be considered as a random function defined on T. 
However, one has to remember that X(t) is a random variable for each t∈T. Whenever 
we consider X(t) as a random function i.e. as a function obtained by a random 
experiment then X(t) is called a trajectory or a path-function or a sample-function of the 
process. 
 
In most cases the stochastic processes are described by their so-called finite-
dimensional distributions. Let t1,t2,…,tn∈T, n = 1,2,… and xi∈R 1 (i = 1,2,…,n). Then 
the distribution functions 
 

1 21 1 2 2 , , 1 2{ ( ) , ( ) , , ( ) } ( , , , )
nn n t t t nX t x X t x X t x F x x x< < < =P …… …  

 
are the finite-dimensional distributions of the process X(t). (This definition can be 
applied only when the state-space of X(t) is R1, or a subset of that. In case of more 
general state spaces similar definition can be given.) 
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Clearly the distribution functions 
1 2, , 1 2( , , , )

nt t t nF x x x… …  should satisfy the following 

conditions 
 

1 2

1 1 1 1

1

, , , 1 2 1 1

, , , , 1 1 1 ( , ) 1

, , 1

( , , , , , , , )

( , , , , ), ( ( , ))

( , )

n

i i n n

n

t t t i i n

t t t t i i n t t n

t t n

F x x x x x

F x x x x F x x

F x x
π π

− +

− +

− +

∞

=

=

…

… … …

…

… …

… … …

…

 

 
where π is an arbitrary permutation of 1,2,…,n. 
 
A very fundamental theorem of the theory of stochastic processes is due Kolmogorov 
telling us: 
 
If 

1 2, , 1 2( , , , )
nt t t nF x x x… … is a family of distribution functions satisfying the above two 

conditions then there exists a stochastic process X(t) having these finite dimensional 
distributions. 
 
Note that Kolmogorov's theorem claims only existence, not uniqueness, which is even 
not true in general. 
 
Kolmogorov's theorem easily implies the existences of the processes described in 
Examples 1.1, 1.2, 1.3. The proof of the existence of the Brownian motion is much 
harder. In fact Kolmogorov's theorem implies the existence of a process satisfying the 
first three conditions of the Brownian motion from section 1.4. However, to prove the 
continuity is much harder. 
 
- 
- 
- 
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