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Summary 
 
Consider an integral 
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where X(⋅) and Y(⋅) are stochastic processes. The most important case is when Y(⋅) is a 
Brownian motion. The definition of this integral was given by Ito, who also described 
its fundamental properties. This integral is also useful to evaluate the local time of the 
Brownian motion. Ito also gave a definition of the differential of a non-differentiable 
Markov process. 

1. Stochastic Integral 

In the article Construction of Random Functions and Path Properties we treated the 
Brownian motion as a possible model of the motion of a microscopic particle in a liquid 
or in a gas. This model seems to be correct when the underlying liquid resp. gas is 
homogeneous and macroscopically motionless (in other words, no external forces are 
acting on it). However, when this is not the case—for example when the temperature is 
changing in space and/or in time—the situation is more complicated. A possible 
mathematical description is the following. Assume that there exists a deterministic (non-
random) function σ(t) > (t ≥ 0) which describes the inhomogeneity (in time) of the 
medium in which the particle moves. Let X(t) be the location of the particle at time t and 
assume that 
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where W(t) is the ordinary Brownian motion and o(⋅) is Landau’s notation for 
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limt→∝t−1o(t) = 0. Hence the location of the particle at time t is 
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However, as we mentioned in the article Construction of Random Functions and Path 
Properties, the Brownian motion is nowhere differentiable and even its sample 
functions are not of bounded variation. Hence the above Stieltjes integral is meaningless 
in its original sense. Several new definitions were given of the above “stochastic 
integral.” 
 
In many important applications the function σ(t) is a stochastic process instead of a 
deterministic function. Hence we give the definition of the above integral in this more 
general situation. It is the so-called Ito integral. 
 
On the stochastic process {σ(t), t ≥ 0} we assume some regularity conditions. The most 
important one is the following: 
 
For any 0 < τ < ∝ the process {σ(t), 0 ≤ t < τ} is independent from {W(t) − W(τ), t ≥ τ}; 
in  other words, the state of the medium before τ does not have any influence to the 
random microscopic motion of the particle after τ. Note that we did not have to assume 
any independence property for σ(⋅). Hence σ(t)W(t) or σ(t)W(t) − σ(τ)W(τ) (t ≥ τ) may 
depend on σ(t) or σ(t)W(t) (t < τ). 
 
The following two conditions are more technical and they can be replaced by weaker 
ones. 
 
Let σ(t) be continuous a.s. and square-integrable a.s. in a given interval 0 ≤ a < b < ∝ 
and 
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Now we turn to the definition of the Ito integral. 
 
Let a = t0 < t1 < … < tn = b be a partition of the interval (a,b) and consider 
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Then the Ito integral 
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is defined as the limit of I(a,b) as n → ∝ and max0≤i≤n−1(ti+1 − ti) → 0. This definition 
seems to be very close to the classical Riemann–Stieltjes integral. The most important 
difference is the following: in case of the Riemann–Stieltjes integral the limit of 
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is equal to the limit of 
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fdg  exists. However, in the case of an Ito integral the limit of I(a,b) and that of 
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or that of 
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might be very different. 
 
Clearly the Ito integral is a linear operator just like the classical integrals. Here we 
present some further properties: 
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