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Summary 
 
Several multivariable frequency response design methods have been developed, based 
on extensions to Nyquist’s stability theory, and Bode’s single loop design approach. 
Several of these approaches have involved reducing the multivariable design to a set of 
single loop designs. The different methods can be combined to give multivariable 
designs aiming at independent control of the individual outputs. These methods are 
illustrated using a design for an unstable chemical reactor. 
 
1. Frequency responses and stability 
 
A linear system will produce an output that is in proportion to its input, and so the 
response to a sine wave input, sin(ωθ), is a sine wave with the same frequency but 
different magnitude and phase, k sin(ωt+θ), and so can be thought of as a complex gain 
g(jω). The measurable frequency response of a system is this complex gain as a function 
of frequency. A frequency ‘s’ on the frequency plane represents an input signal equal to 
the real part of est. So, s = jω corresponds to a signal sin(ωθ).  
 
A frequency s = jω+r corresponds to a signal er sin(ωθ), which is an exponentially 
growing oscillation if r is positive, and shrinking if r is negative. So, the frequency 
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response g(s) for values of s off the imaginary axis represents the response of the system 
to growing and shrinking input oscillations.  
 
1.1. Single loop stability 
 
The poles of a system are those frequencies at which the system gain is infinite. A 
system will be unstable if any of its poles, si, are in the right half plane, since the infinite 
gain will magnify any noise to ensure that the corresponding exponentially growing 
oscillation occurs. The Nyquist stability criterion says that the number of closed loop 
right half plane poles for a negative feedback gain k is equal to the number of open loop 
right half plane poles minus the number of anticlockwise encirclements of the critical 
point –1/k by the open loop frequency response.  
 
So, the number of anticlockwise encirclements of the critical point is equal to the net 
number of poles that have migrated out of the right half plane as the feedback has been 
increased from zero to –k. This can be proved by contour integration, or by considering 
the continuity of the frequency response function. So, the Nyquist diagram of the open 
loop frequency response shows the stability for any closed loop gain.  
 
The closed loop gain is g(s)k/(1+g(s)k). So, the closed loop gain at a particular 
frequency is given by the ratio of g(s)k to (1+g(s)k). For a particular sine wave sin(ωθ), 
the closed loop gain is the ratio of {the distance of the frequency response from the 
origin g(jω)k)} to {the distance from the critical point (1+g(jω)k)}. As the negative 
feedback gain increases from zero, the closed loop poles move along the lines for which 
g(s)k is real and negative, and are at the points where (1+g(s)k) = 0. 
 
1.2. Multivariable stability using Characteristic loci 
 
The characteristic loci also form a natural extension of frequency responses to the multi-
loop situation. Consider the case of equal negative feedback gains k on each loop. The 
number of closed loop right half plane poles for a negative feedback gain kI is equal to 
the number of open loop right half plane poles minus the number of anticlockwise 
encirclements of the critical point –1/k by plots of the eigenvalues of the open loop 
frequency response.  
 
These plots are called the characteristic loci. Once again this can be proved by contour 
integration, or by considering the continuity of the frequency response function. The 
closed loop gain is G(s)k(I+G(s)k)-1. As the negative feedback gain increases from zero, 
the closed loop poles move along the lines for which an eigenvalue, λ (s), of G(s)k is 
real and negative, and are at the points where |I+G(s)k| = 0, and so (1+λ (s)k) = 0 for at 
least one of the eigenvalues. When the eigenvectors are nearly orthogonal, the 
characteristic loci also give a good indication of the closed loop performance. 
 
1.3. Multivariable stability using Gershgorin bands on Nyquist arrays 
 
However, the characteristic loci do not give stability information for different gains on 
different loops. Also, in triangular systems the characteristic loci do not indicate the 
effect of off-diagonal elements on performance. The Nyquist Array and Inverse Nyquist 
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Array can give approximate stability information for different gains on the loops, and 
also indicate the effects of the off-diagonal elements.  
 
The key theorem to obtain an approximate stability result is Gershgorin’s theorem, 
which states that the eigenvalues of a matrix are contained within the union of a set of 
disks centered on the diagonal elements of the matrix and with radius equal to the sum 
of the moduli of the off-diagonal elements in the corresponding row or column. For 
example, the radii of the column disks are 
 

1
( ) ( )

m
c
i ji

j
j i

d j g jω ω
=
≠

= ∑  (1) 

 
When these Gershgorin circles are superimposed on the diagonal elements of the 
Nyquist array, they form the Gershgorin bands. For diagonally dominant systems, one 
of the characteristic loci will be in each of the Gershgorin bands, and so these bands 
indicate the number of encirclements of different points on the negative real axis by the 
characteristic loci. 
 
The number of closed loop right half plane poles for negative feedback gains k1,k2,..,kn 
is equal to the number of open loop right half plane poles minus the number of 
anticlockwise encirclements of the critical points –1/ki by the Gershgorin bands on the 
diagonal elements Gi,i(s). 
 
So, the stability of all the combinations of gains k1,k2,..,kn can be seen simultaneously 
from a single diagram, for all the gains such that the critical points are not in the 
corresponding Gershgorin band. For example, Figure 8 is the Nyquist array of a 
stabilized chemical reactor, the Gershgorin bands extend to 1.16 and 1.0024 so it shows 
that extra negative feedback loops with gains k1>-1/1.16 and k2>-1/1.0024 will leave the 
system stable. 
 
1.4. Diagonal Dominance 
 
A rational m x m matrix G(s) is column diagonal dominant if the following inequality is 
satisfied 
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for i = 1,...,m and all s on the Nyquist D-contour; i.e., each of the bands produced by the 
Gershgorin disks excludes the origin, for i = 1,...,m. Non-interacting control at high 
frequencies requires that the system is diagonal dominant at high frequencies.  
 
However, diagonal dominance is affected by the scaling of the rows and columns, so it is 
often possible to improve row dominance at the expense of making column dominance 
worse. Since scaling is just equivalent to changing the measurement units, measuring the 
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first output in Fahrenheit instead of Celsius would increase the first row by a factor of 1.8, 
leaving the row dominance unchanged but improving the column dominance of the first 
column and worsening the dominance of the second column. A system is said to be 
“generalized diagonally dominant” if there are row and column scales that make it 
dominant. 
 
2. Basic Design 
 
Nyquist’s stability proofs were complemented by the design methods introduced by 
Bode. His frequency response designs were based on plots of the gain as a function of 
frequency using logarithmic scales for the axes, enabling high, medium and low 
frequency gains to be seen simultaneously. One of his main aims was to minimize the 
variations of the controlled response when the system response changed. This was 
achieved by high loop gains within the required bandwidth.  
 
His second aim was to keep the bandwidth as small as possible since high bandwidth 
actuators are expensive. Bode’s single degree of freedom approach was extended to a 
two degree of freedom approach by Horowitz, allowing the noise rejection and 
sensitivity to be designed independently of the input output response. He also developed 
an ideal frequency response, which had greater phase margins than those proposed by 
Bode. The increased phase margins give a more robust design. 
 
2.1. Multivariable Design Methods 
 
One natural extension of single loop control to multivariable systems is the sequential 
loop difference approach of Mayne. Here the system’s inputs and outputs are reordered 
to make the transfer function as near as possible to diagonal or lower triangular. A 
single loop design is performed on the first loop and the transfer functions re-evaluated 
with this control included.  
 
Next, the second loop is designed and included, and the process is repeated until all the 
loops have been controlled. This approach works best when applied to diagonal 
dominant systems, which often occur. However, in some systems there is significant 
interaction between loops requiring a multi-loop design. 
 
Rosenbrock introduced a method based on the Nyquist and Inverse Nyquist arrays 
where the diagonal elements of the arrays have Gershgorin circles superimposed on 
them. These circles indicate the effects of the loops on each other. Pre-compensation is 
used to make the system more diagonal dominant, and then single loop dynamic 
controllers are designed on the basis that the frequency response of each loop lies within 
its Gershgorin band. One way of calculating a suitable pre-compensator is to choose the 
compensator to minimize the sum of the squares of the off-diagonal elements in the 
compensated transfer function G(s)K subject to having the sum of the squares of the 
elements of each column of the controller equal to unity.  
 
The characteristic locus stability test is also used as the basis for a design method by 
MacFarlane. In this method, high frequency interaction is decreased by using a constant 
matrix Kh to make the system more diagonally dominant at high frequencies. The 
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compensated characteristic loci are then calculated and single loop compensators λk(s) 
are designed for each of the loci. These could not be directly implemented since the 
individual loci do not correspond with individual inputs. To implement these, a constant 
approximation A is made to the eigenvector matrix U(s) of the system G(s)Kh and a 
constant approximation B is made to the inverse eigenvector matrix V(s). The 
approximate commutative controller is then implemented as Aλk(s)B, where the 
individual controllers are put together as a diagonal matrix λk(s). The eigenvector 
structure of the controller then approximates that of the G(s)Kh, and so the diagonal 
elements are approximately applied to the individual characteristic gains. Integral action 
is then added to remove low frequency interaction. The initial high frequency 
compensator is designed using the ALIGN algorithm, which minimizes the squares of 
the errors E between the compensated frequency response G(jw)Kh and a diagonal 
matrix with unit modulus elements J, where 
 
 (3) 
 
This same algorithm is used to calculate the A and B matrices for the approximate 
commutative controller, with A chosen to make V(s)A approximately diagonal, and B 
chosen to make BU(s) approximately diagonal. 
 
2.2. Integrating the multivariable design methods 
 
These three stability tests lead to frequency response design and analysis methods. The 
main design steps are: - 
 
1. Scale and reorder the inputs and outputs, to decouple into subsystems. 
2. Sequentially design and add controllers to the subsystems, starting with the fastest. 
3. Test the complete set of controllers. 
 
The steps for the controller design for each subsystem are: - 
 
1. Use a constant pre-compensator to reduce the interaction at medium and high 

frequencies. 
2. Design dynamic compensators either for each loop, or for each characteristic locus, 

concentrating on medium and high frequencies, subject to the extra compensator 
being close to a unit matrix at high frequencies. 

3. Design and add low frequency compensators to increase the low frequency gain, 
subject to not changing the high and medium frequency loop gains too much. 

 
The aims of the design usually include, stability, low sensitivity to noise and parameter 
variations, and robustness. 
 
3. A design example for an unstable chemical reactor 
 
Using the frequency-domain tools described above, a control system design is often 
carried out by using both Nyquist Arrays and Characteristic Loci at different stages in 
the design process. This can best be illustrated by considering an actual design study, as 
follows. 

( )J G jw Kh E= +
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