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Summary 
 
We describe the basics of fuzzy sets and fuzzy logic. Based upon the concept of 
linguistic values, which describe imprecise concepts using words, the basics of fuzzy 
rules and fuzzy inference are introduced. In the second part we briefly explain 
applications of fuzzy rules for function approximation using fuzzy graphs, clustering 
using fuzzy algorithms, and classification under uncertainty using fuzzy decision trees.  
 
1. Introduction 
 
In the past years fuzzy logic has raised increasing attention in real world scenarios. This 
is due to the fact that most approaches from classical statistics assume that we deal with 
exact measurements. But in most, if not all real-world scenarios, we will never have a 
precise measurement. There is always going to be a degree of uncertainty. Even if we 
are able to measure a temperature of 32.42 degrees with two significant numbers, we 
will never know the exact temperature. The only thing we can really say is that a 
measurement is somewhere in a certain range, in this case (32.41,32.43) degree. In 
effect, all recorded data are really intervals, with a width depending on the accuracy of 
the measurement. It is important to stress that this is different from probability, where 
we deal with the likelihood that a certain crisp measurement is being obtained. In the 
context of uncertainty we are interested in the range into which our measurement falls. 
Several approaches to handle information about uncertainty have already been 
proposed, for example interval arithmetic allows us to deal and compute with intervals 
rather than crisp numbers, and also numerical analysis offers ways to propagate errors 
along with the normal computation. The following will concentrate on presenting an 
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approach to deal with imprecise concepts based on fuzzy logic. 
 
This type of logic enables us to handle uncertainty in a very intuitive and natural 
manner. In addition to making it possible to formalize imprecise numbers, it also 
enables us to do arithmetic using such fuzzy numbers. Classical set theory can be 
extended to handle partial memberships, thus making it possible to express vague 
human concepts using fuzzy sets and also describe the corresponding inference systems 
based on fuzzy rules. 
 
Another intriguing feature of using fuzzy systems is the ability to granulate information. 
Using fuzzy clusters of similarity we can hide unwanted or useless information, 
ultimately leading to systems where the granulation can be used to focus the analysis on 
aspects of interest to the user. 
 
This chapter will start out by explaining the basic ideas behind fuzzy logic and fuzzy 
sets, followed by a brief discussion of fuzzy numbers. We will then concentrate on 
fuzzy rules and how we can generate sets of fuzzy rules from data. We will close with a 
discussion of Fuzzy Information Theory by showing how Fuzzy Decision Trees can be 
constructed. 
 
2. Basics of Fuzzy Sets and Fuzzy Logic 
 
Before introducing the concept of fuzzy sets it is beneficial to recall classical sets using 
a slightly different point of view. Consider for example the set of “young people”, 
assuming that our perception of a young person is someone with an age of not more 
than 20 years: 
 
young {x P | age(x) 20}= ∈ ≤  
 
over some domain P of all people and using a function “age” that returns the age of 
some person x in years. We can also define a characteristic function: 
 

young
1 age(x) 20

m (x)
0 age(x) 20

≤⎧
= ⎨ >⎩

 

 
which assigns to elements of P a value of 1 whenever this element belongs to the set of 
young people, and 0 otherwise. This characteristic function can be seen as a 
membership function for our set “young”, defining this set on P. 
 
Someone could now argue with us that he, being just barely over 20 years old, still 
considers himself young to a very high degree. Defining our set young using such a 
sharp boundary seems therefore not very appropriate. The fundamental idea behind 
fuzzy set theory is now a variable notion of membership; that is, elements can belong to 
sets to a certain degree. For our example we could now specify that a person with an age 
of, let's say, 21 years, still belongs to the set of young people, but only to a degree of 
less than one, maybe 0.9. The corresponding membership function would look slightly 
different: 
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young

1 age(x) 20
age(x) 20(x) 1 20 age(x) 30

10
0 age(x) 30

μ

≤⎧
⎪ −⎪= − < ≤⎨
⎪

>⎪⎩

 

 
Now our set “young” contains people with ages between 20 and 30 with a linearly 
decreasing degree of membership, that is, the closer someone's age approaches 30, the 
closer his degree of membership to the set of young people approaches zero (see Figure 
1). 
 

 
 

Figure 1: A linguistic variable age with three fuzzy sets and degrees of memberships for 
a certain age a 

 
The above is a very commonly used example for a fuzzy set. In contrast to classical sets, 
where an element can either belong to a set or lies completely outside of this set, fuzzy 
sets allow also partial memberships. A fuzzy set A is thus defined through specification 
of a membership function Aμ  that assigns each element x a degree of membership to A: 

A [0,1]μ ∈ . Classical sets only allow values 1 (entirely contained) or 0 (not contained), 
whereas fuzzy set theory also deals with values in between 0 and 1. This idea was 
introduced in 1965 by Lotfi A Zadeh. 
 
3. Linguistic Variables and Fuzzy Sets 
 
Covering the domain of a variable with several such fuzzy sets together with a 
corresponding semantic results in linguistic variables, allowing the computation with 
words. For our example this could mean that we define two more membership functions 
for middle-aged and old people, covering the entire domain of the variable age. This 
type of representation is especially appropriate for many real-world applications, where 
certain concepts are inherently vague in nature, either due to imprecise measurements or 
subjectivity. The above example for a linguistic variable is shown in Figure 1. People 
are distinguished using their age (a function defined for all people) in groups of young, 
middle-aged and old people. Using fuzzy sets allows us to incorporate the fact that no 
sharp boundary between these groups exists. Figure 1 also illustrates how the 
corresponding fuzzy sets overlap in these areas, forming non-crisp or fuzzy boundaries. 
Elements at the border between two sets belong to both. For example some person p 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

ARTIFICIAL INTELLIGENCE – Fuzzy Logic - Michael R. Berthold 

©Encyclopedia of Life Support Systems (EOLSS) 
 

with an age of age(p)=24 years belongs to both groups “young” and “middle-aged” to a 
degree of 0.6 and 0.4 resp.; that is, young (p) 0.6μ =  and middle-aged (p) 0.4μ = . With an 
increase in age, the degree of membership to the group of young people will decrease 
whereas middle-agedμ  increases. The linguistic variable age is therefore described 
through three linguistic values, namely “young”, “middle-aged”, and “old”. The overlap 
between the membership functions reflects the imprecise nature of the underlying 
concept. We should keep in mind, however, that most concepts depend on the respective 
context. An old student can easily be a young professor. 
 
This way of defining fuzzy sets over the domain of a variable is often referred to as 
granulation, in contrast to the division into crisp sets (quantization) which is used by 
classical sets. Granulation results in a grouping of objects into imprecise clusters or 
fuzzy granules, with the objects forming a granule drawn together by similarity. Thus 
fuzzy quantization or granulation could also be seen as a form of fuzzy data 
compression. Often the granulation for some or all variables is obtained manually 
through expert interviews. If such expert knowledge is not available or the usage of a 
predefined granulation seems harmful, it is also possible to find a suitable granulation 
automatically, for example from available data. 
 
If no real semantic about the variable is known, a commonly used approach to label 
fuzzy sets is illustrated in Figure 2. 
 

 
 

Figure 2: The standard granulation using an odd number (here seven) of membership 
functions 

 
For a symmetrical domain [-a,a] of the variable often an odd number of membership 
functions is used, usually five or seven. The membership functions are then labeled NL 
(for “negative large”), NM (“negative medium”), NS (“negative small”), Z (“zero”), and 
the corresponding labels PS, PM, PL for the positive side. 
 
In real applications the shape of membership functions is usually restricted to a certain 
class of functions that can be specified with only few parameters. Figure 3 shows the 
most commonly used shapes for membership functions. 
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Figure 3: Most commonly used shapes for membership functions (trapezoidal, 
triangular, Gaussian, singleton) 

 
On the left a trapezoidal function is depicted which can be specified through the four 
corner-points <a,b,c,d>. The triangular membership function can be seen as a special 
case of this trapezoidal function. Often used is also a Gaussian membership function 
which can be simply specified through two parameters a and e and offers nice 
mathematical properties such as continuity and differentiability. This is an often 
required property when membership functions are to be fine-tuned automatically during 
a training stage. Finally the singleton <a|m> on the right can be used to define a fuzzy 
set containing only one element to a certain degree m 1≤ . The choice of membership 
function is mostly driven by the application. The Gaussian membership functions are 
usually used when the resulting system has to be adapted through gradient-descent 
methods. Knowledge retrieved from expert interviews will usually be modeled through 
triangular or trapezoidal membership functions, since the three resp. four parameters 
used to define these functions are intuitively easier to understand. An expert will prefer 
to define his notion of a fuzzy set by specifying the area where the degree of 
membership should be 1 ([b,c] for the trapezoid) and where it should be zero (outside of 
(a,d)), rather than giving mean a and standard deviation e of a Gaussian. The resulting 
fuzzy system will not be affected drastically. Changing from one form of the 
membership function to another will affect the system only within the boundaries of its 
granulation. 
 
The following parameters can be defined and are often used to characterize any fuzzy 
membership function: 
 

 support: A As {x : (x) 0}μ= > , the area where the membership function is greater 
than 0. 

 core: A Ac {x : (x) 1}μ= = , the area for which elements have maximum degree of 
membership to the fuzzy set A. Note that the core can be empty when the 
membership function stays below 1 over the entire domain. 

 alpha-cut: AA {x : (x) }α μ α= ≥ , the cut through the membership function of A 
at height α. 

 height: A x Ah max { (x)}μ= , the maximum value of the membership function of 
A. 

 
Before discussing operators on fuzzy sets, the following section will discuss how fuzzy 
numbers can be treated. 
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