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Summary 
 
This chapter addresses the problem of controlling a dynamical process using a hybrid 
controller, i.e., a controller that combines continuous dynamics with discrete logic. 
Typically, the discrete logic is used to effectively switch between several continuous 
controls laws and is called a supervisor.  
 
We review several tools that can be found in the literature to design this type of hybrid 
controllers and to analyze the resulting closed-loop system. We illustrate how these 
tools can be utilized through two case studies. 
 
1. Introduction 
 
The basic problem considered here is the control of complex systems for which 
traditional control methodologies based on a single continuous controller do not provide 
satisfactory performance. In hybrid control, one builds a bank of alternative candidate 
controllers and switches among them based on measurements collected online.  
 
The switching is orchestrated by a specially designed logic that uses the measurements 
to decide which controller should be placed in the feedback loop at each instant of time. 
Figure 1 shows the basic architecture employed by hybrid control. 
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Figure 1. Hybrid control 
 
In this figure u  represents the control input, d  an exogenous disturbance and/or 
measurement noise, and y  the measured output. The dashed box is a conceptual 
representation of a switching controller. In practice, switching controllers are 
implemented differently. Suppose that we desire to switch among a family C  of 
controllers parameterized by some variable q∈Q . For example, we could have  
 

{ ( ) ( ) }q q q q qF z y u G z y qz:= = , , = , : ∈ ,QC  
 
where the set Q  that parameterizes the functions ( )qF ⋅ , ( )qG ⋅ , q∈Q  can be finite, 

infinite but countable, or not even countable (e.g., a ball in k ). Switching among the 
controllers in C  can then be accomplished using the following multi-controller: 
 

( ) ( )C C CF x y u G x yx σ σ= , , = , ,  (1) 
 
where :[0, )σ ∞ →Q  is a piecewise constant signal—called the switching signal—that 
effectively determines which controller is in the loop at each instant of time. The points 
of discontinuity of σ  correspond to a change in candidate controller and are therefore 
called switching times. The multi-controller in (1) is far more efficient than the 
conceptual structure in Figure 1 as its dimension is independent of the number of 
candidate controllers. Moreover, if some of the controllers in Figure 1 were unstable, 
their interval states could become unbounded if they were left out of the feedback loop. 
These issues are further discussed in [Morse, 1995]. In this chapter, we use a 
continuous-time multi-controller such as (1) to keep the exposition concrete. However, 
the concepts presented generalize to other types of candidate control laws, such as 
discrete-time [Borelli et al., 1998] or hybrid controllers [Hespanha et al., 1999]. 
 
The top element in Figure 1 is the logic that controls the switch, or more precisely, that 
generates the switching signal in (1). This logic is called the supervisor and its purpose 
is to monitor the signals that can be measured (in this case u  and y ) and decide, at each 
instant of time, which candidate controller should be put in the feedback loop with the 
process. In hybrid control, the supervisor combines continuous dynamics with discrete 
logic and is therefore a hybrid system. A typical hybrid supervisor can be defined by an 
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ordinary differential equation coupled with a recursive equation such as 
 

( ) ( )u yσ σϕ ϕ ϕ σ −= , , , = , ,Ψ Γ  (2) 
 
where { ( ) }q q⋅ : ∈Ψ Q  is a family of vector fields, and ( )⋅Γ  a discrete transition 
function. A pair of signals ( , )ϕ σ  is called a solution to (2) if σ  is piecewise constant 
taking values in Q , ϕ  is a solution in the sense of Carathéodory to the time-varying 
differential equation  
 

( ) ( ( ) ( )) 0t u t y t tσϕ ϕ= , , , >Ψ  
 
and, for every 0t > , 
 

( ) ( ( ) ( ))t t tσ ϕ σ −= , .Γ  
 
The signal ϕ  is called the continuous state of the supervisor and σ  its discrete state. 
We assume here that all signals of interest are continuous from above, and, given a 
piecewise continuous signal σ , we denote by σ −  the signal defined by 

( ) lim ( )tt τσ σ τ−
↑= , 0t > . More general models for hybrid systems and more 

sophisticated notions of solution can be found in Modeling of Hybrid Systems and in the 
works of [Tavernini, 1987; Morse et al., 1992; Back et al., 1993; Nerode and Kohn, 
1993; Antsaklis et al., 1993; Brockett, 1993; Branicky et al., 1994; Lygeros et al., 1999; 
Zhang et al., 2000]. 
 
Hybrid control systems, like the one depicted in Figure 1, are used in many situations, 
such as: 
 
1. When the performance requirements for the closed-loop system change over time. In 
this case, the supervisor is responsible for placing in the feedback loop the controller 
that is most suitable for the current needs.  
 
2. When there is large uncertainty in the process to be controlled and offline 
identification is not possible or desirable. Here, the supervisor should place in the 
feedback loop the controller that is more likely to stabilize the actual process and 
provide adequate performance. This type of hybrid control can be viewed as a form of 
adaptive control, where switching replaces the more traditional continuous tuning. This 
type of hybrid control is considered in the case study in Section 4.2.  
 
3. When the nature of the process requires hybrid stabilization. This can occur because 
there are fundamental limitations on the type of controllers that are able to stabilize the 
process or because the actuation or sensing mechanisms naturally result in switching 
control laws. Examples of the former are nonholonomic systems (cf., Control of 
NonlinearSystems and Brockett, 1983) and of the later are systems for which actuation 
is achieved through on-off valves or switches, or when the sensors used for feedback 
have a limited range of operation (cf. case study in Section 4.1).  
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The reader is referred to the works of [Morse, 1995; Hespanha, 1998; Eker and 
Malmborg, 1999; Lemmon et al., 1999; Liberzon and Morse, 1999; DeCarlo et al., 
2000] and references therein for additional examples.  
 
The interconnection of a process modeled by an ordinary differential equation, the 
multi-controller (1), and the hybrid supervisor (2), results in a hybrid system of the form  
 

( ) ( , ),x A x d xσ σ σ −= , , = Φ  (3) 
 
where the continuous state x  takes value in n , the discrete state σ  is the switching 
signal that takes values in Q , and d  the process’ exogenous disturbance. The analysis 
of this type of systems has been actively pursued in the last years. In particular, 
considerable research has been carried out to answer: reachability questions such has  
 
Given two disjoint sets , n⊂ ×QS R , if the state ( )x σ,  of (3) starts inside S , will it 
ever enter R ? 
 
liveness questions such has  
 
Given two discrete states 1 2q q, ∈Q , will there be an infinite number of switching times 
at which σ  switches from 1q  to 2q ?   
 
or stability questions such as  
 
Will the solution to (3) exist globally and, if so, will the continuous state x  remain 
uniformly bounded and the output y  converge to some set-point r  as t →∞ ? 
 
In this chapter we are mostly interested in stability questions such as the last one. Note 
that with hybrid systems like (3), global existence of solution may fail either because 
the continuous state x  becomes unbounded in finite time—often called finite escape 
time—or because the discrete state σ  exhibits an infinite number of switches in finite 
time—often called chattering or the Zeno phenomenon (cf. Modeling of Hybrid 
Systems, Well-posedness of Hybrid Systems and Johansson et al., 1999).  
 
There is no systematic procedure to study the stability of a generic hybrid system. 
However, the arguments used to prove the stability of hybrid systems usually consist of 
consecutively applying results of the type  
 
PD:  Assuming that x  belongs to a family kX  of signals taking values in n , then the 
discrete state σ  belong to the family kS  of switching signals. 
 
PC:  Assuming that σ  belongs to a family kS  of switching signals, then the continuous 

state x  belongs to the family 1k+X  of signals taking values in n .  
 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION – Vol. XV - Stabilization Through Hybrid Control - João P. Hespanha 

©Encyclopedia of Life Support Systems (EOLSS) 

until one concludes that x  belongs to some family of uniformly bounded signals nX  
with the desired asymptotic properties. A result of the PD type corresponds to a 
property of the discrete-logic  
 

( ) 0x tσ σ −= Φ , , ≥ ,  (4) 
 
whereas a result of the PC type corresponds to a property of the continuous-time 
switched system  
 

( )x A x dσ= , .  
 
In the following sections we present several results of these types that are available in 
the literature. Section 2 focus on PC results, whereas Section 3 concentrates on PD 
results. Many of these lead directly to hybrid controller design methodologies. This is 
illustrated in Section 4 through two case studies.  
 
For lack of space, we do not pursue analysis techniques based on impact or Poicaré 
return maps. The basic idea behind impact maps is to “sample” the continuous state at 
switching times and then analyze its evolution as if one was dealing with a discrete-time 
system.  
 
The main difficulty with this type of approach is that, because the sampling is not 
uniform over time, even for simple continuous dynamics (e.g., linear or affine), the 
“sampled” system may be very nonlinear and it may even be difficult to write it 
explicitly.  
 
However, this type of technique was used successfully, e.g., by [Grizzle et al., 2001] to 
analyze bipedal walking robots and by [Gonçalves et al., 2001] to analyze relay 
feedback systems. 
 
2. Switched Systems 
 
In this section we study the properties of a continuous-time switched system of the form 
 

( ) n kx A x d x dσ= , , ∈ , ∈ ,  (5) 
 
where the family of vector fields { ( ) }qA q⋅ : ∈Q  is given and the switching signal 

[0 )σ : ,∞ →Q  is known to belong to some set S  of piecewise-constant signals.  
 
We recall that K denotes the set of all continuous functions α : [0,∞) → [0,∞) that are 
zero at zero, strictly increasing, and continuous; ∞K the subset of K consisting of those 
functions that are unbounded; and KL the set of continuous functions β : [0,∞)×[0,∞) 
→ [0,∞) which, for every fixed value of the second argument, are of class Kwhen 
regarded as functions of the first argument, and that have lim   ( ,   )  0ß s tτ→∞ =  for 
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every fixed s ≥ 0. Given a vector nx∈ we denote by _ x  the Euclidean norm of x. 
 
We say that (5) is uniformly asymptotically stable over S  if there exists a function β  
of class KL  such that, for every σ ∈S ,  
|| ( )|| (|| ( )||, ), 0,x t x t tβ τ τ τ≤ − ∀ ≥ ≥  (6) 
 
along solutions to (5) for which ( ) 0d t = , 0t ≥ . When ( , )s tβ  is of the form tce sλ−  for 
some , 0c λ >  we say that (5) is uniformly exponentially stable over S . In this case we 
can emphasize the rate of decay in the above bound by adding that (5) has stability 
margin λ . Local versions of these definitions can be obtained by restricting ( )x τ  in (6) 
to belong to an open neighborhood of the origin.  
 
For exogenous inputs d  that are not necessarily zero, we say that (5) is uniformly input-
to-state stable over S  if there exists a function α  of class K  and a function β  of class 
KL  such that, for every σ ∈S ,  
 

[ , )
|| ( )|| (|| ( )||, ) sup (|| ( )||), 0

s t
x t x t d t t

τ
β τ τ α τ

∈
≤ − + ∀ ≥ ≥ ,  (7) 

 

along solutions to (5). Replacing the ( )sups t τ∈ −  in (7) by the integral 
t

ds
τ
⋅∫  over the 

same interval, we obtain the definition of uniform integral-input-to-state stability over 
S . 
 
When all the vector fields ( )qA ⋅ , q∈Q  are linear we say that (5) is a linear switched 

system. In case the set of matrices that represent these maps in some basis of n  is 
compact, (5) is called a compact linear switched system. Compactness is automatically 
guaranteed whenever Q  is finite.  
 
For compact linear systems, one can use fairly standard results to prove that uniform 
asymptotic stability is equivalent to uniform exponential stability (cf., e.g., the work of 
Molchanov and Pyatnitskiy, 1989, for details). 
 
Similar to what happens for unswitched linear systems, uniform exponential stability of 
a compact linear switched system over S  implies uniform input-to-state and integral-
input-to-state stability over the same setS .  
 
In fact, uniform exponential stability overS , actually implies that several induced 
norms of (5) are uniformly bounded overS . We define some of these norms next:  
 
Given a positive constant λ , we say that (5) has input-to-state teλ -weighted, L∞ -
induced norm uniformly bounded over S  if there exist finite constants g , 0g  such that, 
for every piecewise continuous input d  and every σ ∈S , 
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0
[ , )

|| ( )|| || ( )|| sup || ( )||, 0.t s

t
e x t g e x g e d s tλ λτ λ

τ
τ τ≤ + ≥ ≥  (8) 

 
In general, this is stronger than uniform input-to-state stability because (8) implies (7) 
with 0( , ) ts t g e sλβ −=  and ( )s gsα = , 0t s, ≥ . When (8) is replaced by  
 

1
22 2

0 0
|| ( )|| || ( )|| || ( )|| , 0,

tt se x t g e x g e d s ds tλ λτ λτ τ⎛ ⎞≤ + ≥ ≥⎜ ⎟
⎝ ⎠∫  (9) 

 
we say that (5) has input-to-state teλ -weighted, 2L -to- L∞ -induced norm uniformly 
bounded over S . In general, this is stronger than uniform integral-input-to-state 

stability because (9) implies that (7) holds with ( )sups t τ∈ −  replaced by 
t

ds
τ
⋅∫ , 

0( , ) ts t g e sλβ −= , and ( )s gsα = , 0t s, ≥ . To verify that this is true one needs to use the 

fact that 
1

2 2( )b b
a ax x≤ | |∫ ∫  for every signal x  for which the integrals exist.  Finally, if (8) 

is replaced by 
 

1 1
2 22 2 2 2

00 0
|| ( )|| || (0)|| || ( )|| , 0,

t t
e x g x g e d tλτ λττ τ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

≤ + ≥∫ ∫  (10) 

 
we say that (5) has input-to-state teλ -weighted, 2L -induced norm uniformly bounded 
overS  It is straightforward to show (cf., e.g., Hespanha and Morse, 1999b)  that the 
following holds.  
 
Lemma 1.  Suppose that (5) is a compact linear switched system. Given a family S  of 
piecewise constant switching signals, if (5) is uniformly exponentially stable over S , 
with stability margin 0λ , then, for every 0[0, )λ λ∈ , (5) has input-to-state teλ -weighted, 
L∞ -induced norm uniformly bounded over S . Similarly for the 2L  and 2L -to- L∞  
induced norms.  
 
The computation of 2L -induced norms for switched linear systems was studied by 
[Hespanha, 2002], which showed that even for very slow switching the induced norm of 
a switched system can be strictly larger than the norms of the systems being switched.  
 
In fact, the induced norm of a switched system is realization dependent and cannot be 
determined just from the transfer functions of the systems being switched. 
 
We proceed to analyze the uniform stability of switched systems over several classes of 
switching signal. 
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